Learn More
The use of synthetic biological systems in research, healthcare, and manufacturing often requires autonomous history-dependent behavior and therefore some form of engineered biological memory. For example, the study or reprogramming of aging, cancer, or development would benefit from genetically encoded counters capable of recording up to several hundred(More)
Cdc25 dual-specificity phosphatases coordinate entry into mitosis through activating dephosphorylation of the Mitosis-Promoting Factor, Cdk1-cyclin B1. Activation of Cdc25C at the G2/M transition, involves its dissociation from 14-3-3, together with its hyperphosphorylation on several sites within its regulatory N-terminal domain, mediated by(More)
In Drosophila melanogaster, Hox genes are organized in an anterior and a posterior cluster, called Antennapedia complex and bithorax complex, located on the same chromosome arm and separated by 10 Mb of DNA. Both clusters are repressed by Polycomb group (PcG) proteins. Here, we show that genes of the two Hox complexes can interact within nuclear PcG bodies(More)
Whole-cell biosensors have several advantages for the detection of biological substances and have proven to be useful analytical tools. However, several hurdles have limited whole-cell biosensor application in the clinic, primarily their unreliable operation in complex media and low signal-to-noise ratio. We report that bacterial biosensors with genetically(More)
In mammalian cells, three Cdc25 phosphatases A, B, C coordinate cell cycle progression through activating dephosphorylation of Cyclin-dependent kinases. Whereas Cdc25B is believed to trigger entry into mitosis, Cdc25C is thought to act at a later stage of mitosis and in the nucleus. We report that a fraction of Cdc25C localises to centrosomes in a cell(More)
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to(More)