Jerome A. Roth

Learn More
DMT1 has four names, transports as many as eight metals, may have four or more isoforms and carries out its transport for multiple purposes. This review is a start at sorting out these multiplicities. A G185R mutation results in diminished gastrointestinal iron uptake and decreased endosomal iron exit in microcytic mice and Belgrade rats. Comparison of(More)
This review attempts to summarize and clarify our basic knowledge as to the various factors that potentially influence the risks imposed from chronic exposure to high atmospheric levels of manganese (Mn). The studies describe the interrelationship of the different systems in the body that regulate Mn homeostasis by characterizing specific, biological(More)
Over the past several decades there has been considerable progress in our basic knowledge as to the mechanisms and factors regulating Mn toxicity. The disorder known as manganism is associated with the preferential accumulation of Mn in the globus pallidus of the basal ganglia which is generally considered to be the major and initial site of injury. Because(More)
Chronic exposure to the divalent heavy metals, such as iron, lead, manganese (Mn), and chromium, has been linked to the development of severe, often irreversible neurological disorders and increased vulnerability to developing Parkinson's disease. Although the mechanisms by which these metals elicit or facilitate neuronal cell death are not well defined,(More)
Abnormal iron accumulation is linked to a variety of neurological disorders and may contribute to the progressive damage seen in these diseases. The biochemical processes responsible for iron accumulation are not known but are likely to entail alteration in transport into injured brain areas. The major transport protein responsible for uptake of iron is(More)
DMT1 (divalent metal transporter; also known as SLC11A2, DCT1 or Nramp2) is responsible for ferrous iron uptake in the duodenum, iron exit from endosomes during the transferrin cycle and some transferrin-independent iron uptake in many cells. Four protein isoforms differ by starting in exon 1A or 2 and ending with alternative peptides encoded by mRNA that(More)
DMT1-Divalent Metal (Ion) Transporter 1 or SLC11A2/DCT1/Nramp2 - transports Fe2+ into the duodenum and out of the endosome during the transferrin cycle. DMTI also is important in non-transferrin bound iron uptake. It plays similar roles in Mn2+ trafficking. Voltage clamping showed that six other metals evoked currents, but it is unclear if these metals are(More)
Two isoforms of divalent metal transporter 1 (DMT1) (Nramp2 and DCT1) are encoded by two mRNA species, one of which contains an iron response element (IRE) motif in the 3'-noncoding region. The subcellular distribution of the two isoforms of DMT1 is distinct, and the -IRE species accumulates in the nucleus of neuronal or neuronal-like cells. Reverse(More)
The kinetic constants were determined for dopamine (CA) and norepinephrine (NE) metabolism by phenolsulfotransferase (PST), type A and B monoamine oxidase (MAO), and membrane-bound and soluble catechol-O-methyltransferase (COMT) in frontal lobe preparations of human brain. PST and membrane-bound COMT were found to have the lowest Km values for both(More)
Previous studies of the distribution of catechol-O-methyltransferase (COMT) have concentrated on the soluble enzyme activity. In this study the activity of the membrane-bound enzyme was determined in different brain regions and peripheral tissues of the rat. Membrane-bound COMT, like the soluble enzyme, has a general distribution with high levels in liver,(More)