Learn More
Activity patterns were recorded from 51 motoneurons in the fifth lumbar ventral root of cats walking on a motorized treadmill at a range of speeds between 0.1 and 1.3 m/s. The muscle of destination of recorded motoneurons was identified by spike-triggered averaging of EMG recordings from each of the anterior thigh muscles. Forty-three motoneurons projected(More)
The past ten years have witnessed the introduction of several new methods. for chronic recording o f electrical activity in peripheral nerves, single nerve fibers and muscles, and for monitoring mechanical events correlated with muscular action. Although these methods were developed as research tools in the study o f movements of unrestrained, intact(More)
In current functional neuromuscular stimulation systems (FNS), control and feedback signals are usually provided by external sensors and switches, which pose problems such as donning and calibration time, cosmesis, and mechanical vulnerability. Artificial sensors are difficult to build and are insufficiently biocompatible and reliable for implantation. With(More)
The objective of this research was to compare the length of muscle spindles to the length of the whole muscle, during normal movements. Pairs of piezoelectric crystals were implanted near the origin and insertion of muscle fibres in the medial gastrocnemius (MG) muscle of cats. The distance between crystals was measured with pulsed ultrasound, the(More)
We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking(More)
Glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor-beta (TGF-beta) superfamily, has been shown to have trophic activity on dopaminergic neurons. Recent studies indicate that GDNF can protect the cerebral hemispheres from damage induced by middle cerebral arterial ligation. We found that such neuroprotective(More)
1. Cat hind limb peripheral nerves were fitted with cuff recording electrodes, and their distal portions were later cut and ligated to prevent regeneration. The compound action potential amplitude initially declined with a time constant between 1 and 2 months and then remained relatively unchanged for periods of more than a year. Similar but smaller changes(More)
The conduction velocity of peripheral neurons recorded by wire microelectrodes implanted in intact, freely moving cats was determined on-line using the technique of spike-triggered averaging of nerve cuff electrode records described here. Axonal velocity was estimated from the conduction latency between two adjacent sets of tripolar recording electrodes(More)
Long-term recording from single lumbar motoneurons of intact cats revealed activation patterns fundamentally different from those seen in decerebrate preparations. In intact cats, motoneuron bursts showed marked rate modulation without initial doublets. Each unit's frequencygram generally resembled the envelope of the gross electromyogram simultaneously(More)