Jeroen Demeyer

Learn More
In this paper, we describe a new infinite family of q 2 −1 2-tight sets in the hyperbolic quadrics Q + (5, q), for q ≡ 5 or 9 mod 12. Under the Klein correspondence, these correspond to Cameron–Liebler line classes of PG(3, q) having parameter q 2 −1 2. This is the second known infinite family of nontrivial Cameron–Liebler line classes, the first family(More)
Let K be a field with a valuation satisfying the following conditions: both K and the residue field k have characteristic zero; the value group is not 2-divisible; there exists a maximal subfield F in the valuation ring such that Gal(¯ F /F) and Gal(¯ k/k) have the same 2-cohomological dimension and this dimension is finite. Then Hilbert's Tenth Problem has(More)
  • 1