Learn More
In this paper a comparison is made between four frequently encountered resampling algorithms for particle filters. A theoretical framework is introduced to be able to understand and explain the differences between the resampling algorithms. This facilitates a comparison of the algorithms with respect to their resampling quality and computational complexity.(More)
Modern graphics cards for computers, and especially their graphics processing units (GPUs), are designed for fast rendering of graphics. In order to achieve this GPUs are equipped with a parallel architecture which can be exploited for general-purpose computing on GPU (GPGPU) as a complement to the central processing unit (CPU). In this paper GPGPU(More)
In inertial human motion capture, a multitude of body segments are equipped with inertial measurement units, consisting of 3D accelerometers, 3D gyroscopes and 3D magnetometers. Relative position and orientation estimates can be obtained using the inertial data together with a biomechanical model. In this work we present an optimization-based solution to(More)
This paper is concerned with the problem of estimating the relative translation and orientation of an inertial measurement unit and a spherical camera, which are rigidly connected. The key is to realize that this problem is in fact an instance of a standard problem within the area of system identification, referred to as a gray-box problem. We propose a new(More)
This paper is concerned with the problem of estimating the relative translation and orientation of an inertial measurement unit and a camera, which are rigidly connected. The key is to realize that this problem is in fact an instance of a standard problem within the area of system identification , referred to as a gray-box problem. We propose a new(More)
—In this paper we propose a 6DOF tracking system combining Ultra-Wideband measurements with low-cost MEMS inertial measurements. A tightly coupled system is developed which estimates position as well as orientation of the sensor-unit while being reliable in case of multipath effects and NLOS conditions. The experimental results show robust and continuous(More)
The problem of estimating and predicting position and orientation (pose) of a camera is approached by fusing measurements from inertial sensors (accelero-meters and rate gyroscopes) and vision. The sensor fusion approach described in this contribution is based on non-linear filtering of these complementary sensors. This way, accurate and robust pose(More)
—Measurements from magnetometers and inertial sensors (accelerometers and gyroscopes) can be combined to give 3D orientation estimates. In order to obtain accurate orientation estimates it is imperative that the magnetometer and inertial sensor axes are aligned and that the magnetometer is properly calibrated for both sensor errors as well as presence of(More)
©2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Abstract—In this work(More)
—This paper is concerned with the problem of estimating the relative translation and orientation between an inertial measurement unit and a camera which are rigidly connected. The key is to realise that this problem is in fact an instance of a standard problem within the area of system identification, referred to as a gray-box problem. We propose a new(More)