Learn More
Recently, we have demonstrated that N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652) (1) adopts a bitopic pose at one protomer of a dopamine D2 receptor (D2R) dimer to negatively modulate the binding of dopamine at the other protomer. The 1H-indole-2-carboxamide moiety of 1 extends into a(More)
We recently demonstrated that SB269652 (1) engages one protomer of a dopamine D2 receptor (D2R) dimer in a bitopic mode to allosterically inhibit the binding of dopamine at the other protomer. Herein, we investigate structural determinants for allostery, focusing on modifications to three moieties within 1. We find that orthosteric "head" groups with small(More)
Historically, determination of G protein-coupled receptor (GPCR) ligand efficacy has often been restricted to identifying the ligand as an agonist or antagonist at a given signaling pathway. This classification was deemed sufficient to predict compound efficacy at all signaling endpoints, including the therapeutically relevant one(s). However, it is now(More)
SB269652 is to our knowledge the first drug-like allosteric modulator of the dopamine D2 receptor (D2R), but it contains structural features associated with orthosteric D2R antagonists. Using a functional complementation system to control the identity of individual protomers within a dimeric D2R complex, we converted the pharmacology of the interaction(More)
Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of(More)
Specifically designed bivalent ligands targeting G protein-coupled receptor (GPCR) dimeric structures have become increasingly popular in recent literature. The advantages of the bivalent approach are numerous, including enhanced potency and receptor subtype specificity. However, the use of bivalent ligands as potential pharmacotherapeutics is limited by(More)
Biased agonism offers an opportunity for the medicinal chemist to discover pathway-selective ligands for GPCRs. A number of studies have suggested that biased agonism at the dopamine D2 receptor (D2R) may be advantageous for the treatment of neuropsychiatric disorders, including schizophrenia. As such, it is of great importance to gain insight into the SAR(More)
Growing evidence has suggested a role in targeting the adenosine A2A receptor for the treatment of Parkinson's disease. The literature compounds KW 6002 (2) and ZM 241385 (5) were used as a starting point from which a series of novel ligands targeting the adenosine A2A receptor were synthesized and tested in a recombinant human adenosine A2A receptor(More)
Biased agonism describes the ability of ligands to stabilize different conformations of a GPCR linked to distinct functional outcomes and offers the prospect of designing pathway-specific drugs that avoid on-target side effects. This mechanism is usually inferred from pharmacological data with the assumption that the confounding influences of observational(More)
By means of a formal structural hybridization of the antipsychotic drug aripiprazole and the heterocyclic catecholamine surrogates present in the β2-adrenoceptor agonists procaterol and BI-167107 (4), we designed and synthesized a collection of novel hydroxy-substituted heteroarylpiperazines and heteroarylhomopiperazines with high dopamine D2 receptor (D2R)(More)
  • 1