Learn More
The purpose of this paper is to quantify climatic controls on the area burned by fire in different vegetation types in the western United States. We demonstrate that wildfire area burned (WFAB) in the American West was controlled by climate during the 20th century (1916-2003). Persistent ecosystem-specific correlations between climate and WFAB are grouped(More)
In western North America, snowpack has declined in recent decades, and further losses are projected through the 21st century. Here, we evaluate the uniqueness of recent declines using snowpack reconstructions from 66 tree-ring chronologies in key runoff-generating areas of the Colorado, Columbia, and Missouri River drainages. Over the past millennium, late(More)
We utilize empirically derived estimates of landscape resistance to assess current landscape connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA, and project how a warming climate may affect landscape resistance and population connectivity in the future. We evaluate the influences of five potential future temperature(More)
Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods,(More)
Reliable predictions of how changing climate and disturbance regimes will affect forest ecosystems are crucial for effective forest management. Current fire and climate research in forest ecosystem and community ecology offers data and methods that can inform such predictions. However, research in these fields occurs at different scales, with disparate(More)
Boreal species sensitive to the timing and duration of snow cover are particularly vulnerable to global climate change. Recent work has shown a link between wolverine (Gulo gulo) habitat and persistent spring snow cover through 15 May, the approximate end of the wolverine’s reproductive denning period. We modeled the distribution of snow cover within the(More)
Climate change is likely to alter population connectivity, particularly for species associated with higher elevation environments. The goal of this study is to predict the potential effects of future climate change on population connectivity and genetic diversity of American marten populations across a 30.2 million hectare region of the in the US northern(More)
The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity,(More)
Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable(More)
Probable impacts associated with projected 21 st century changes in Northwest climate include the following: April 1 snowpack is projected to decrease by 28% • across the state by the 2020s, 40% by the 2040s, and 59% by the 2080s compared with the 1916-2006 historical average. As a result, seasonal streamflow timing will likely shift significantly in(More)