Learn More
Here we provide a genome-wide, high-resolution map of the phylogenetic origin of the genome of most extant laboratory mouse inbred strains. Our analysis is based on the genotypes of wild-caught mice from three subspecies of Mus musculus. We show that classical laboratory strains are derived from a few fancy mice with limited haplotype diversity. Their(More)
The Collaborative Cross (CC) is a mouse recombinant inbred strain panel that is being developed as a resource for mammalian systems genetics. Here we describe an experiment that uses partially inbred CC lines to evaluate the genetic properties and utility of this emerging resource. Genome-wide analysis of the incipient strains reveals high genetic(More)
The Collaborative Cross (CC) is a panel of recombinant inbred lines derived from eight genetically diverse laboratory inbred strains. Recently, the genetic architecture of the CC population was reported based on the genotype of a single male per line, and other publications reported incompletely inbred CC mice that have been used to map a variety of traits.(More)
Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for(More)
We present full-genome genotype imputations for 100 classical laboratory mouse strains, using a novel method. Using genotypes at 549,683 SNP loci obtained with the Mouse Diversity Array, we partitioned the genome of 100 mouse strains into 40,647 intervals that exhibit no evidence of historical recombination. For each of these intervals we inferred a local(More)
Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression(More)
Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is(More)
CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as(More)
X chromosome inactivation (XCI) is the mammalian mechanism of dosage compensation that balances X-linked gene expression between the sexes. Early during female development, each cell of the embryo proper independently inactivates one of its two parental X-chromosomes. In mice, the choice of which X chromosome is inactivated is affected by the genotype of a(More)
Mouse models play a crucial role in the study of human behavioral traits and diseases. Variation of gene expression in brain may play a critical role in behavioral phenotypes, and thus it is of great importance to understand regulation of transcription in mouse brain. In this study, we analyzed the role of two important factors influencing steady-state(More)