Jeremy N. Burrows

Learn More
Historically, one of the key problems in neglected disease drug discovery has been identifying new and interesting chemotypes. Phenotypic screening of the malaria parasite, Plasmodium falciparum has yielded almost 30,000 submicromolar hits in recent years. To make this collection more accessible, a collection of 400 chemotypes has been assembled, termed the(More)
In the fight against malaria new medicines are an essential weapon. For the parts of the world where the current gold standard artemisinin combination therapies are active, significant improvements can still be made: for example combination medicines which allow for single dose regimens, cheaper, safer and more effective medicines, or improved stability(More)
Over the past decade, there has been a transformation in the portfolio of medicines to combat malaria. New fixed-dose artemisinin combination therapy is available, with four different types having received approval from Stringent Regulatory Authorities or the World Health Organization (WHO). However, there is still scope for improvement. The Malaria(More)
Chemotherapy is still the cornerstone for malaria control. Developing drugs against Plasmodium parasites and monitoring their efficacy requires methods to accurately determine the parasite killing rate in response to treatment. Commonly used techniques essentially measure metabolic activity as a proxy for parasite viability. However, these approaches are(More)
In view of the need to continuously feed the pipeline with new anti-malarial agents adapted to differentiated and more stringent target product profiles (e.g., new modes of action, transmission-blocking activity or long-duration chemo-protection), a chemical library consisting of more than 250,000 compounds has been evaluated in a blood-stage Plasmodium(More)
Malaria is one of the most significant causes of childhood mortality, but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad-ranging activity against all manifestations of the disease.(More)
The objective of this work was to characterize the in vitro (Plasmodium falciparum) and in vivo (Plasmodium berghei) activity profile of the recently discovered lead compound SSJ-183. The molecule showed in vitro a fast and strong inhibitory effect on growth of all P. falciparum blood stages, with a tendency to a more pronounced stage-specific action on(More)
Malaria persists as one of the most devastating global infectious diseases. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) has been identified as a new malaria drug target, and a triazolopyrimidine-based DHODH inhibitor 1 (DSM265) is in clinical development. We sought to identify compounds with higher potency against Plasmodium(More)
  • Aaron Nilsen, Galen P Miley, Isaac P Forquer, Michael W Mather, Kasiram Katneni, Yuexin Li +15 others
  • 2014
The historical antimalarial compound endochin served as a structural lead for optimization. Endochin-like quinolones (ELQ) were prepared by a novel chemical route and assessed for in vitro activity against multidrug resistant strains of Plasmodium falciparum and against malaria infections in mice. Here we describe the pathway to discovery of a potent class(More)
  • R. Matthew Cross, David L. Flanigan, Andrii Monastyrskyi, Alexis N. LaCrue, Fabián E. Sáenz, Jordany R. Maignan +11 others
  • 2014
The continued proliferation of malaria throughout temperate and tropical regions of the world has promoted a push for more efficacious treatments to combat the disease. Unfortunately, more recent remedies such as artemisinin combination therapies have been rendered less effective due to developing parasite resistance, and new drugs are required that target(More)