Learn More
Here we present an approximate analytical theory for the relationship between a protein structure's contact matrix and the shape of its energy spectrum in amino acid sequence space. We demonstrate a dependence of the number of sequences of low energy in a structure on the eigenvalues of the structure's contact matrix, and then use a Monte Carlo simulation(More)
The division of the S. cerevisiae budding yeast, which produces one mother cell and one daughter cell, is asymmetric with respect to aging. Remarkably, the asymmetry of yeast aging coincides with asymmetric inheritance of damaged and aggregated proteins by the mother cell. Here, we show that misfolded proteins are retained in the mother cell by being(More)
Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication(More)
An open question of great interest in biophysics is whether variations in structure cause protein folds to differ in the number of amino acid sequences that can fold to them stably, i.e., in their designability. Recently, we have shown that a novel quantitative measure of a fold's tertiary topology, called its contact trace, strongly correlates with the(More)
Modeling the inherent flexibility of the protein backbone as part of computational protein design is necessary to capture the behavior of real proteins and is a prerequisite for the accurate exploration of protein sequence space. We present the results of a broad exploration of sequence space, with backbone flexibility, through a novel approach: large-scale(More)
Protein stability often is studied in vitro through the use of urea and guanidinium chloride, chemical cosolvents that disrupt protein native structure. Much controversy still surrounds the underlying mechanism by which these molecules denature proteins. Here we review current thinking on various aspects of chemical denaturation. We begin by discussing(More)
Despite the spontaneity of some in vitro protein-folding reactions, native folding in vivo often requires the participation of barrel-shaped multimeric complexes known as chaperonins. Although it has long been known that chaperonin substrates fold upon sequestration inside the chaperonin barrel, the precise mechanism by which confinement within this space(More)
We investigate the effect of time-dependent noise on the shape of a morphogen gradient in a developing embryo. Perturbation theory is used to calculate the deviations from deterministic behavior in a simple reaction-diffusion model of robust gradient formation, and the results are confirmed by numerical simulation. It is shown that such deviations can(More)
Allosteric conformational change underlies biological function in many proteins. Allostery refers to a conformational event in which one region of a protein undergoes structural rearrangement in response to a stimulus applied to a different region of the same protein. Here, I show for a variety of proteins that a simple, phenomenological model of the(More)
Chaperonins are known to maintain the stability of the proteome by facilitating the productive folding of numerous misfolded or aggregation-prone proteins and are thus essential for cell viability. Despite their established importance, the mechanism by which chaperonins facilitate protein folding remains unknown. Computer simulation techniques are now being(More)