Learn More
Broad-scale variation in taxonomic richness is strongly correlated with climate. Many mechanisms have been hypothesized to explain these patterns; however, testable predictions that would distinguish among them have rarely been derived. Here, we examine several prominent hypotheses for climate–richness relationships, deriving and testing predictions based(More)
Aim We surveyed the empirical literature to determine how well six diversity hypotheses account for spatial patterns in species richness across varying scales of grain and extent. Location Worldwide. Methods We identified 393 analyses ('cases') in 297 publications meeting our criteria. These criteria included the requirement that more than one diversity(More)
Dynamic update is a mechanism that allows software updates and patches to be applied to a running system without loss of service or down-time. Operating systems would benefit from dynamic update, but place unique demands on any implementation of such features. These demands stem from the event-driven nature of operating systems, from their restricted(More)
We compiled 46 broadscale data sets of species richness for a wide range of terrestrial plant, invertebrate, and ectothermic vertebrate groups in all parts of the world to test the ability of metabolic theory to account for observed diversity gradients. The theory makes two related predictions: (1) In-transformed richness is linearly associated with a(More)
Climate change threatens to commit 15–37% of species to extinction by 2050. There is a clear need to support policy-makers analyzing and assessing the impact of climate change along with land use changes. This requires a megascience infrastructure that is capable of discovering and integrating enormous volumes of multidisciplinary data, i.e. data from(More)
Anthropogenic global changes threaten species and the ecosystem services upon which society depends. Effective solutions to this multifaceted crisis need scientific responses spanning disciplines and spatial scales. Macroecology develops broad-scale predictions of species' distributions and abundances, complementing the frequently local focus of global(More)
Global changes have the potential to cause a mass extinction. Predicting how species will respond to anticipated changes is a necessary prerequisite to effectively conserving them and reducing extinction rates. Species niche models are widely used for such predictions, but their reliability over long time periods is known to vary. However, climate and land(More)
BACKGROUND Malaria transmission rates in Africa can vary dramatically over the space of a few kilometres. This spatial heterogeneity reflects variation in vector mosquito habitat and presents an important obstacle to the efficient allocation of malaria control resources. Malaria control is further complicated by combinations of vector species that respond(More)
For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change-related range shifts in bumblebee species across the full extents of their latitudinal and(More)