Learn More
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga(More)
An array of rapidly inactivating voltage-gated K+ channels is distributed throughout the nervous systems of vertebrates and invertebrates. Although these channels are thought to regulate the excitability of neurons by attenuating voltage signals, their specific functions are often poorly understood. We studied the role of the prototypical inactivating K+(More)
Shaker K(+)-channels are one of several voltage-activated K(+)-channels expressed in Drosophila photoreceptors. We have shown recently that Shaker channels act as selective amplifiers, attenuating some signals while boosting others. Loss of these channels reduces the photoreceptor information capacity (bits s(-1)) and induces compensatory changes in(More)
Determining the contribution of a single type of ion channel to information processing within a neuron requires not only knowledge of the properties of the channel but also understanding of its function within a complex system. We studied the contribution of slow delayed rectifier K+ channels to neural coding in Drosophila photoreceptors by combining(More)
Accurate limb placement helps animals and robots to walk on substrates that are uneven or contain gaps. Visual information is important in controlling limb placement in walking mammals but has received little attention in insects. We investigated whether desert locusts walking along a horizontal ladder use vision to control limb placement. High-speed video(More)
Energetically costly behaviours, such as flight, push physiological systems to their limits requiring metabolic rates (MR) that are highly elevated above the resting MR (RMR). Both RMR and MR during exercise (e.g. flight or running) in birds and mammals scale allometrically, although there is little consensus about the underlying mechanisms or the scaling(More)
Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing(More)
Attempts to relate brain size to behaviour and cognition have rarely integrated information from insects with that from vertebrates. Many insects, however, demonstrate that highly differentiated motor repertoires, extensive social structures and cognition are possible with very small brains, emphasising that we need to understand the neural circuits, not(More)