Jeremy A. Brown

Learn More
The results of a study of the three-dimensional vibration of two dry human skulls in response to harmonic excitation are presented. The vibratory response exhibits three distinct types of motion across the range of audible frequencies. At low frequencies below 1000 Hz, whole-head quasi-rigid motion is seen. At the middle frequencies between 1000 and 6000(More)
Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between(More)
The bone-anchored-hearing-aid (BAHA) transduces airborne sound into skull vibration. Current bilateral BAHA configurations, for sounds directly facing listeners, will apply forces that are in-phase with each other and directed roughly towards the center of the head. Below approximately 1000 Hz the two cochleae respond in approximately the same direction and(More)
A 50MHz array-based imaging system was used to obtain high-resolution images of the ear and auditory system. This previously described custom built imaging system (Brown et al. 2004a, 2004b; Brown and Lockwood 2005) is capable of 50 microm axial resolution, and lateral resolution varying from 80 microm to 130 microm over a 5.12 mm scan depth. The imaging(More)
Digital transmit and receive beamformers for a 45-MHz, 7-element annular array are described. The transmit beamformer produces 0- to 80-Vpp monocycle pulses with a timing error of less than +/-125 ps. Up to four adjustable transmit focal zones can be selected. The dynamic receive beamformer uses a variable frequency sampling technique in which the frequency(More)
  • 1