Learn More
Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and(More)
A challenge in designing a Brain-Computer Interface (BCI) is the choice of the channels, e.g. the most relevant sensors. Although a setup with many sensors can be more efficient for the detection of Event-Related Potential (ERP) like the P300, it is relevant to consider only a low number of sensors for a commercial or clinical BCI application. Indeed, a(More)
A Brain-Computer Interface (BCI) is a specific type of human-machine interface that enables communication between a subject/patient and a computer by direct control from decoding of brain activity. This paper deals with the P300-speller application that enables to write a text based on the oddball paradigm. To improve the ergonomics and minimize the cost of(More)
Inferences about brain function, using functional neuroimaging data, require models of how the data were caused. A variety of models are used in practice that range from conceptual models of functional anatomy to nonlinear mathematical models of hemodynamic responses (e.g. as measured by functional magnetic resonance imaging, fMRI) and neuronal responses.(More)
There are now a number of non-invasive methods to image human brain function in-vivo. However, the accuracy of these images remains unknown and can currently only be estimated through the use of invasive recordings to generate a functional ground truth. Neuronal activity follows grey matter structure and accurate estimates of neuronal activity will have(More)
  • 1