Jeremi Gancet

Learn More
This paper presents a decisional architecture and the associated algorithms for multi-UAV (unmanned aerial vehicle) systems. The architecture enables different schemes of decision distribution in the system, depending on the available decision making capabilities of the UAVs and on the operational constraints related to the tasks to achieve. The paper(More)
This paper describes the COMETS (Real-Time Coordination and Control of Multiple Heterogeneous Unmanned Aerial Vehicles) Project, which is aimed at designing and implementing a system for cooperative activities using heterogeneous UAVs. Heterogeneity is considered both in terms of aerial vehicles and onboard processing capabilities ranging from fully(More)
This paper describes the features and concepts behind the Command, Control and Intelligence (C2I) system under development in the ICARUS project, which aims at improving crisis management with the use of unmanned search and rescue robotic appliances embedded and integrated into existing infrastructures. A beneficial C2I system should assist the search and(More)
In a variety of emergency settings robot assistance has been identified as highly valuable, providing remote, and thus safe, access and operation. There are many different forms of human-robot interactions, allowing a team of humans and robots to take advantage of skills of each team member. A relatively new area of research considers interactions between(More)
Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the(More)
This paper presents MINDWALKER, which is an ambitious EC funded research project coordinated by Space Applications Services aiming at the development of novel Brain Neural Computer Interfaces (BNCI) and robotics technologies, with the goal of obtaining a crutch-less assistive lower limbs exoskeleton, with non-invasive brain control approach as main(More)
The importance for small and lightweight rovers providing high mobility and versatility in future exploration missions is increasing. Within this paper the terrestrial test platform Coyote II is presented. The rover is equipped with a novel locomotion concept combining hybrid legged-wheels with spherical helical wheels. This allows to perform side-to-side(More)
In the PADI Project we explore how geosimulation techniques based on agent technology can support designers when creating geographic spaces. As a case study we work on the design of parks. We propose to simulate the way a geographic space could be used by its future users, mainly in terms of navigation and occupation of space, and to display the usage(More)
Powered exoskeletons can empower paraplegics to stand and walk. Actively controlled hip ab/adduction (HAA) is needed for weight shift and for lateral foot placement to support dynamic balance control and to counteract disturbances in the frontal plane. Here, we describe the design, control, and preliminary evaluation of a novel exoskeleton, MINDWALKER.(More)