Learn More
Bone morphogenetic protein 2 (BMP2) activates unfolded protein response (UPR) transducers, such as PERK and OASIS, in osteoblast cells. ATF6, a bZIP transcription factor, is also a UPR transducer. However, the involvement of ATF6 in BMP2-induced osteoblast differentiation has not yet been elucidated. In the present study, BMP2 treatment was shown to(More)
AIMS MicroRNAs (miRNA) are involved in various biological processes including cellular differentiation. However, the role of miR-433 in osteoblast differentiation remains poorly understood. The objective of this study was to investigate the effect of miR-433 on BMP2-induced osteoblast differentiation. MAIN METHODS The expression of mature miR-433 in cells(More)
Osteoblasts and adipocytes are differentiated from common mesenchymal stem cells (MSCs) in processes which are tightly controlled by various growth factors, signaling molecules, transcriptional factors and microRNAs. Recently, chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) was identified as a critical regulator of MSC fate. In the(More)
Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is a potent transcription factor that represses osteoblast differentiation and bone formation. Previously, we observed that stimuli for osteoblast differentiation, such as bone morphogenetic protein 2 (BMP2), inhibits COUP-TFII expression. This study was undertaken to identify(More)
This study examined the role of AMPK activation in osteoblast differentiation and the underlining mechanism. An AMPK activator (AICAR or metformin) stimulated osteoblast differentiation with increases in ALP and OC protein production as well as the induction of AMPK phosphorylation in MC3T3E1 cells. In addition, metformin induced the phosphorylation of(More)
Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. Several recent studies have suggested that SMILE is a novel co-repressor that is involved in nuclear receptor signaling; however, the role of SMILE in osteoblast differentiation has not yet been elucidated. This(More)
INTRODUCTION Angiogenesis is closely associated with bone formation, especially endochondral ossification. Angiopoietin 1 (Ang1) is a specific growth factor functioning to generate a stable and matured vasculature through the Tie2 receptor/PI3K/AKT pathway. Recently cartilage oligomeric matrix protein (COMP)-Ang1, an Ang1 variant which is more potent than(More)
Bone morphogenetic proteins (BMPs) have demonstrated effectiveness as bone regeneration agents whether delivered as recombinant proteins or via gene therapy. Current gene therapy approaches use vectors expressing single BMPs. In contrast, multiple BMPs are coordinately expressed during bone development and fracture healing. Furthermore, BMPs likely exist in(More)
Notch1 genes encode receptors for a signaling pathway that regulates cell growth and differentiation in various contexts, but the role of Notch1 signaling in osteogenesis is not well defined. Notch1 controls osteoblast differentiation by affecting Runx2, but the question arises whether normal osteoblastic differentiation can occur regardless of the presence(More)
This study evaluated whether the combination of biodegradable β-tricalcium phosphate (β-TCP) scaffolds with recombinant human bone morphogenetic protein-2 (rhBMP-2) or platelet-rich plasma (PRP) could accelerate bone formation and increase bone height using a rabbit non-through cranial bone defect model. Four non-through cylindrical bone defects with a(More)