Jeong-Hui Park

Learn More
Functional nanofibrous materials composed of gelatin-apatite-poly(lactide-co-caprolactone) (PLCL) were produced using an electrospinning process. A gelatin-apatite precipitate, which mimicked bone extracellular matrix, was homogenized in an organic solvent using various concentrations of PLCL. A fibrous structure with approximate diameters of a few hundred(More)
We have demonstrated the successful production of titanium phosphate glass microspheres in the size range of ∼10-200 μm using an inexpensive, efficient, easily scalable process and assessed their use in bone tissue engineering applications. Glasses of the following compositions were prepared by melt-quench techniques: 0.5P₂O₅-0.4CaO-(0.1-x)Na₂O-xTiO₂, where(More)
BACKGROUND/AIM A novel nanofibrous membrane of a degradable biopolymer poly (lactide-co-ε-caprolactone) (PLCL) for guided bone regeneration (GBR) was designed and its tissue compatibility and ability to promote the regeneration of new bone were investigated in a rat mandibular defect model. MATERIALS AND METHODS The nanofibrous structuring of the PLCL(More)
This study reports the preparation of novel porous scaffolds of calcium phosphate cement (CPC) combined with alginate, and their potential usefulness as a three-dimensional (3-D) matrix for drug delivery and tissue engineering of bone. An α-tricalcium phosphate-based powder was mixed with sodium alginate solution and then directly injected into a fibrous(More)
Microspherical particulates have been an attractive form of biomaterials that find usefulness in cell delivery and tissue engineering. A variety of compositions, including bioactive ceramics, degradable polymers, and their composites, have been developed into a microsphere form and have demonstrated the potential to fill defective bone and to populate(More)
Scalable expansion of cells for regenerative cell therapy or to produce large quantities for high-throughput screening remains a challenge for bioprocess engineers. Laboratory scale cell expansion using t-flasks requires frequent passaging that exposes cells to many poorly defined bioprocess forces that can cause damage or alter their phenotype.(More)
Tissue engineering of stem cells in concert with 3-dimensional (3D) scaffolds is a promising approach for regeneration of bone tissues. Bioactive ceramic microspheres are considered effective 3D stem cell carriers for bone tissue engineering. Here we used evacuated calcium phosphate (CaP) microspheres as the carrier of mesenchymal stem cells (MSCs) derived(More)
Calcium phosphate cements (CPCs) have recently gained great interest as injectable bone substitutes for use in dentistry and orthopedics. α-tricalcium phosphate (α-TCP) is a popularly used precursor powder for CPCs. When mixed with appropriate content of liquid and kept under aqueous conditions, α-TCP dissolves to form a calcium-deficient hydroxyapatite and(More)
As a way to modify both the physical and biological properties of a highly elastic and degradable polyurethane (PU), silk fibroin (SF) was blended with the PU at differing ratios. With increasing SF content, the tensile strength decreased as did the strain at break; the stiffness increased to around 35 MPa for the highest silk content. C2C12 (a mouse(More)
Control over the interface of biomaterials that favors the initial adhesion and subsequent differentiation of stem cells is one of the key strategies in bone tissue engineering. Here we engineer the interface of biopolymer electrospun fiber matrices with a fusion protein of fibronectin 9-10 domain (FNIII9-10) and osteocalcin (OCN), aiming to stimulate(More)