Jeong Chan Joo

Learn More
Lipase B from Candida antarctica (CalB) is a versatile biocatalyst for various bioconversions. In this study, the thermostability of CalB was improved through the introduction of a new disulfide bridge. Analysis of the B-factors of residue pairs in CalB wild type (CalB-WT) followed by simple flexibility analysis of residues in CalB-WT and its designated(More)
The characteristics of the oxidative polymerization of alkyl phenol derivatives catalyzed by Coprinus cinereus peroxidase (CIP) were studied qualitatively and quantitatively using a combined approach of experiments and computational docking simulations. As determined by docking study of CIP and alkyl phenols, the binding interaction was found to be(More)
Enzyme reactions in organic solvent such as for organic synthesis have great industrial potential. However, enzymes lose their stability in hydrophilic organic solvents due to the deformation of the enzyme by the solvent. It is thus important to enhance the stability of enzymes in hydrophilic organic solvents. Previous approaches have not considered on the(More)
Low thermostability often hampers the applications of xylanases in industrial processes operated at high temperature, such as degradation of biomass or pulp bleaching. Thermostability of enzymes can be improved by the optimization of unstable residues via protein engineering. In this study, computational modeling instead of random mutagenesis was used to(More)
One widely known drawback of enzymes is their instability in diverse conditions. The thermostability of enzymes is particularly relevant for industrial applications because operation at high temperatures has the advantage of a faster reaction rate. Protein stability is mainly determined in this study by intra-molecular hydrophobic interactions that have a(More)
Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at(More)
Glutamate decarboxylase B (GadB) from Escherichia coli is a highly active biocatalyst that can convert l-glutamate to γ-aminobutyrate (GABA), a precursor of 2-pyrrolidone (a monomer of Nylon 4). In contrast to vigorous studies of pH shifting of GadB, mesophilic GadB has not been stabilized by protein engineering. In this study, we improved the(More)
Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid(More)
Despite recent advances in our understanding of the importance of protein-surface properties for protein thermostability, to date many rational designs have been focused instead on protein-core characteristics such as core packing and cavity filling. Rational strategies to design protein surfaces to improve protein thermostability have not yet been well(More)
The aim of this study was to analyze the significance of leucine to proline substitution at position 138(Leu138Pro) on the hydrolysis of penicillin and ampicillin that we identified in the blaSHV gene of clinical Escherichia coli swine isolate. Kinetic analysis of the mutant proteins showed that K m value of the purified L138P mutant was comparatively(More)