Learn More
PKD2, the second gene for the autosomal dominant polycystic kidney disease (ADPKD), encodes a protein, polycystin-2, with predicted structural similarity to cation channel subunits. However, the function of polycystin-2 remains unknown. We used polyclonal antisera specific for the intracellular NH(2) and COOH termini to identify polycystin-2 as an(More)
PKD2, mutations in which cause autosomal dominant polycystic kidney disease (ADPKD), encodes an integral membrane glycoprotein with similarity to calcium channel subunits. We induced two mutations in the mouse homologue Pkd2 (ref.4): an unstable allele (WS25; hereafter denoted Pkd2WS25) that can undergo homologous-recombination-based somatic rearrangement(More)
To identify neuropeptides that have a broad spectrum of actions on the feeding system of Aplysia, we searched for bioactive peptides that are present in both the gut and the CNS. We identified a family of structurally related nonapeptides and decapeptides (enterins) that are present in the gut and CNS of Aplysia, and most of which share the HSFVamide(More)
Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high(More)
Various cytokines and chemokines play a role in carcinogenesis. However, no study has previously been undertaken to investigate comprehensively the expressions of cytokines and chemokines in hepatoma cells. In this study, we determined which cytokines and chemokines are expressed in hepatoma cells. Recently, it was reported that the expressions of several(More)
Although previous studies on hexokinase (HK) II indicate both the N- and C-terminal halves are catalytically active, we show in this study the N-terminal half is significantly more catalytic than the C-terminal half in addition to having a significantly higher Km for ATP and Glu. Furthermore, truncated forms of intact HK II lacking its first N-terminal 18(More)
Unlike normal hepatocytes, most hepatocellular carcinomas (HCCs) are quite resistant to death receptor-mediated apoptosis when the cell surface death receptor is cross linked with either agonistic antibodies or soluble death ligand proteins in vitro. The resistance might play an essential role in the escape from the host immune surveillance; however, it has(More)
UNLABELLED (18)F-FDG uptake in malignant tumors largely depends on the presence of facilitated glucose transporters, especially type 1 (Glut 1) and a rate-limiting glycolytic enzyme, hexokinase (HK) type II. Low expression of Glut 1 was reported in hepatocellular carcinoma (HCC), whereas high expression was found in cholangiocarcinoma. Immunohistochemistry(More)
Mutations in PKD2 cause autosomal dominant kidney disease (ADPKD). Polycystin-2, the PKD2 gene product, is an integral membrane glycoprotein of unknown function. We have identified PKD2L, another member of the PKD2 gene family. PKD2L is expressed in adult heart and skeletal muscle, brain, spleen, testis, and retina, and alternative transcripts of 2.4, 2.7,(More)