Learn More
Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e-), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e- to drive hydrogen (H2) production via the chloroplast hydrogenases(More)
The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency(More)
Photobiological hydrogen production using microalgae is being developed into a promising clean fuel stream for the future. In this study, microarray analyses were used to obtain global expression profiles of mRNA abundance in the green alga Chlamydomonas reinhardtii at different time points before the onset and during the course of sulfur-depleted hydrogen(More)
We present an integrated analysis of the molecular repertoire of Chlamydomonas reinhardtii under reference conditions. Bioinformatics annotation methods combined with GCxGC/MS-based metabolomics and LC/MS-based shotgun proteomics profiling technologies have been applied to characterize abundant proteins and metabolites, resulting in the detection of 1069(More)
The metabolome of the model species Chlamydomonas reinhardtii has been analyzed during 120 h of sulfur depletion to induce anaerobic hydrogen (H(2)) production, using NMR spectroscopy, gas chromatography coupled to mass spectrometry, and TLC. The results indicate that these unicellular green algae consume freshly supplied acetate in the medium to accumulate(More)
Solar energy capture, conversion into chemical energy and biopolymers by photoautotrophic organisms, is the basis for almost all life on Earth. A broad range of organisms have developed complex molecular machinery for the efficient conversion of sunlight to chemical energy over the past 3 billion years, which to the present day has not been matched by any(More)
The development of clean borderless fuels is of vital importance to human and environmental health and global prosperity. Currently, fuels make up approximately 67% of the global energy market (total market = 15 TW year(-1)) (Hoffert et al. 1998). In contrast, global electricity demand accounts for only 33% (Hoffert et al. 1998). Yet, despite the importance(More)
Apoproteins of higher plant light-harvesting complexes (LHC) share considerable amino acid sequence identity/similarity. Despite this fact, they occur in different oligomeric states (i.e., monomeric, dimeric, and trimeric). As a step toward understanding the underlying structure requirements for different oligomerization behavior, we analyzed whether amino(More)
Phototrophic organisms use photosynthesis to convert solar energy into chemical energy. In nature, the chemical energy is stored in a diverse range of biopolymers. These sunlight-derived, energy-rich biopolymers can be converted into environmentally clean and CO(2) neutral fuels. A select group of photosynthetic microorganisms have developed the ability to(More)
The rapid development of clean fuels for the future is a critically important global challenge for two main reasons. First, new fuels are needed to supplement and ultimately replace depleting oil reserves. Second, fuels capable of zero CO2 emissions are needed to slow the impact of global warming. This review summarizes the development of solar powered(More)