Jens Peter Lindemann

Learn More
Sensing is often implicitly assumed to be the passive acquisition of information. However, part of the sensory information is generated actively when animals move. For instance, humans shift their gaze actively in a sequence of saccades towards interesting locations in a scene. Likewise, many insects shift their gaze by saccadic turns of body and head,(More)
Behavioural and electrophysiological experiments suggest that blowflies employ an active saccadic strategy of flight and gaze control to separate the rotational from the translational optic flow components. As a consequence, this allows motion sensitive neurons to encode during translatory intersaccadic phases of locomotion information about the spatial(More)
Even if a stimulus pattern moves at a constant velocity across the receptive field of motion-sensitive neurons, such as lobula plate tangential cells (LPTCs) of flies, the response amplitude modulates over time. The amplitude of these response modulations is related to local pattern properties of the moving retinal image. On the one hand, pattern-dependent(More)
Optic flow, i.e., retinal image movement resulting from ego-motion, is a crucial source of information used for obstacle avoidance and course control in flying insects. Optic flow analysis may prove promising for mobile robotics although it is currently not among the standard techniques. Insects have developed a computationally cheap analysis mechanism for(More)
Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around ("optic flow") to accomplish their extraordinary performance. Thereby, they employ(More)
Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational efforts to extract information about the environment from the retinal image flow. Because of the distinguishing(More)