Jens Osterhoff

Learn More
Laser-driven, quasimonoenergetic electron beams of up to approximately 200 MeV in energy have been observed from steady-state-flow gas cells. These beams emitted within a low-divergence cone of 2.1+/-0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible(More)
We report experimental results on laser-driven electron acceleration with low divergence. The electron beam was generated by focussing 750 mJ, 42 fs laser pulses into a gas-filled capillary discharge waveguide at electron densities in the range between 1018 and 1019cm−3. Quasi-monoenergetic electron bunches with energies as high as 500 MeV have been(More)
The method of creating ultra-relativistic electron beams from wakefields of relativistically intense ultra-short laser pulses, which plow through dilute plasma environments, may announce a revolution in particle-accelerator engineering. By harnessing the extreme electric-potential gradients along the propagation direction of these wakes, this technology(More)
We investigate the influence of a tilted laser-pulse-intensity front on laser-wakefield acceleration. Such asymmetric light pulses may be exploited to obtain control over the electron-bunch-pointing direction and in our case allowed for reproducible electron-beam steering in an all-optical way within an 8 mrad opening window with respect to the initial(More)
We report on experimental studies of ion acceleration from spherical targets of diameter 15 microm irradiated by ultraintense (1x10(20) W/cm2) pulses from a 20-TW Ti:sapphire laser system. A highly directed proton beam with plateau-shaped spectrum extending to energies up to 8 MeV is observed in the laser propagation direction. This beam arises from(More)
We have studied experimentally the angular distributions of fusion neutrons from plasmas of multi-keV ion temperature, created by 40 fs, multi-TW laser pulses in dense plumes of D2 and CD4 clusters. A slight anisotropy in the neutron emission is observed. We attribute this anisotropy to the fact that the differential cross section for DD fusion is(More)
Latest developments in the field of laser-wakefield accelerators (LWFAs) have led to relatively stable electron beams in terms of peak energy, charge, pointing and divergence from mmsized accelerators. Simulations and LWFA theory indicate that these beams have low transverse emittances and ultrashort bunch durations on the order of ∼10 fs. These features(More)
  • 1