Learn More
Parsing unrestricted text is useful for many language technology applications but requires parsing methods that are both robust and efficient. MaltParser is a language-independent system for data-driven dependency parsing that can be used to induce a parser for a new language from a treebank sample in a simple yet flexible manner. Experimental evaluation(More)
The Conference on Computational Natural Language Learning features a shared task, in which participants train and test their learning systems on the same data sets. In 2007, as in 2006, the shared task has been devoted to dependency parsing, this year with both a multilingual track and a domain adaptation track. In this paper, we define the tasks of the(More)
We introduce MaltParser, a data-driven parser generator for dependency parsing. Given a treebank in dependency format, MaltParser can be used to induce a parser for the language of the treebank. MaltParser supports several parsing algorithms and learning algorithms, and allows user-defined feature models, consisting of arbitrary combinations of lexical(More)
We use SVM classifiers to predict the next action of a deterministic parser that builds labeled projective dependency graphs in an incremental fashion. Non-projective dependencies are captured indirectly by projectivizing the training data for the classifiers and applying an inverse transformation to the output of the parser. We present evaluation results(More)
We describe a two-stage optimization of the MaltParser system for the ten languages in the multilingual track of the CoNLL 2007 shared task on dependency parsing. The first stage consists in tuning a single-parser system for each language by optimizing parameters of the parsing algorithm, the feature model, and the learning algorithm. The second stage(More)
We introduce Talbanken05, a Swedish treebank based on a syntactically annotated corpus from the 1970s, Talbanken76, converted to modern formats. The treebank is available in three different formats, besides the original one: two versions of phrase structure annotation and one dependency-based annotation, all of which are encoded in XML. In this paper, we(More)
This paper reports the results of experiments using memory-based learning to guide a deterministic dependency parser for unrestricted natural language text. Using data from a small treebank of Swedish, memory-based classifiers for predicting the next action of the parser are constructed. The accuracy of a classifier as such is evaluated on held-out data(More)
In order to realize the full potential of dependency-based syntactic parsing, it is desirable to allow non-projective dependency structures. We show how a datadriven deterministic dependency parser, in itself restricted to projective structures, can be combined with graph transformation techniques to produce non-projective structures. Experiments using data(More)
Deterministic parsing guided by treebankinduced classifiers has emerged as a simple and efficient alternative to more complex models for data-driven parsing. We present a systematic comparison of memory-based learning (MBL) and support vector machines (SVM) for inducing classifiers for deterministic dependency parsing, using data from Chinese, English and(More)