Learn More
Stress granules (SGs) are cytoplasmic aggregates of stalled translational preinitiation complexes that accumulate during stress. GW bodies/processing bodies (PBs) are distinct cytoplasmic sites of mRNA degradation. In this study, we show that SGs and PBs are spatially, compositionally, and functionally linked. SGs and PBs are induced by stress, but SG(More)
Nonsense-mediated decay (NMD) rids eukaryotic cells of aberrant mRNAs containing premature termination codons. These are discriminated from true termination codons by downstream cis-elements, such as exon-exon junctions. We describe three novel human proteins involved in NMD, hUpf2, hUpf3a, and hUpf3b. While in HeLa cell extracts these proteins are(More)
The nonsense-mediated decay (NMD) pathway subjects mRNAs with premature termination codons (PTCs) to rapid decay. The conserved Upf1-3 complex interacts with the eukaryotic translation release factors, eRF3 and eRF1, and triggers NMD when translation termination takes place at a PTC. Contrasting models postulate central roles in PTC-recognition for the exon(More)
Cellular mRNAs exist in messenger ribonucleoprotein (mRNP) complexes, which undergo transitions during the lifetime of the mRNAs and direct posttranscriptional gene regulation. A final posttranscriptional step in gene expression is the turnover of the mRNP, which involves degradation of the mRNA and recycling of associated proteins. How tightly associated(More)
Skeletal muscle satellite cells in their niche are quiescent and upon muscle injury, exit quiescence, proliferate to repair muscle tissue, and self-renew to replenish the satellite cell population. To understand the mechanisms involved in maintaining satellite cell quiescence, we identified gene transcripts that were differentially expressed during(More)
The nonsense-mediated mRNA decay (NMD) pathway is responsible for the rapid degradation of eukaryotic mRNAs on which ribosomes fail to terminate translation properly. NMD thereby contributes to the elimination of aberrant mRNAs, improving the fidelity of gene expression, but also serves to regulate gene expression at the post-transcriptional level. Here we(More)
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation(More)
Messenger RNA transcripts that contain premature stop codons are degraded by a process termed nonsense-mediated mRNA decay (NMD). Although previously thought of as a pathway that rids the cell of non-functional mRNAs arising from mutations and processing errors, new research suggests a more general and evolutionarily important role for NMD in the control of(More)