Learn More
Peatlands act as CO2 sinks that store more soil carbon per unit area than any other ecosystem. Increased aeration and subsequent oxidation following drainage causes peatlands to lose carbon and leads to a relative increase in the concentration of inorganic compounds. To infer carbon losses as a result of drainage, we studied four sites in Central Europe(More)
Biochar is increasingly promoted as a beneficial soil conditioner. However, it may contain residues of polycyclic aromatic hydrocarbons (PAHs) as a result of its production by pyrolysis. To date, analytical methods to analyze PAHs in biochar quantitatively are hardly available. This study presents an optimized and validated procedure to quantify the 16 U.S.(More)
We assessed how consequences of future land-use change may affect size and spatial shifts of C stocks under three potential trends in policy—(a) business-as-usual: continuation of land-use trends observed during the past 15 years; (b) extensification: full extensification of open-land; and (c) liberalization: full reforestation potential. The build-up times(More)
Root turnover is an important carbon flux component in grassland ecosystems because it replenishes substantial parts of carbon lost from soil via heterotrophic respiration and leaching. Among the various methods to estimate root turnover, the root's radiocarbon signature has rarely been applied to grassland soils previously, although the value of this(More)
Organic farming is believed to improve soil fertility by enhancing soil organic matter (SOM) contents. An important co-benefit would be the sequestration of carbon from atmospheric CO2. Such a positive effect has been suggested based on data from field experiments though many studies were not designed to address the issue of carbon sequestration. The aim of(More)
Mechanisms leading to high mean residence times of organic matter in subsoil horizons are poorly understood. In lower parts of the soil profile root material contributes greatly to soil organic matter (SOM). The objective of this study was to elucidate the decomposition dynamics of root-derived C and N in different soil depths during a 3 year field(More)
Present concepts emphasize that substrate quality exerts an important control over substrate decomposability and temperature sensitivity of heterotrophic soil respiration (Rh). In this context, soil organic matter (SOM) quality is defined by its molecular and structural complexity and determines the ease by which substrate is oxidized. However, temperature(More)