Jens Langejuergen

Learn More
There is increasing evidence that breath volatile organic compounds (VOC) have the potential to support the diagnosis and management of inflammatory diseases such as COPD. In this study we used a novel breath sampling device to search for COPD related VOCs. We included a large number of healthy controls and patients with mild to moderate COPD, recruited(More)
Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected(More)
Identifying the compounds of an unknown gas mixture by using an ion mobility spectrometer (IMS) is a difficult task, because several ion species can be generated in the ionization process. One method to analyze the occurring peaks in an IMS spectrum is coupling an IMS to a mass spectrometer (MS). In our setup we coupled a (3)H drift tube IMS to a Bruker(More)
One major drawback of ion mobility spectrometry (IMS) is the dependence of the response to a certain analyte on the concentration of water or the presence of other compounds in the sample gas. Especially for low proton affine analytes, e.g., benzene, which often exists in mixtures with other volatile organic compounds, such as toluene and xylene (BTX), a(More)
For future development of simple miniaturized sensors based on pulsed atmospheric pressure ionization as known from ion mobility spectrometry, we investigated the reaction kinetics of ion-ion-recombination to establish selective ion suppression as an easy to apply separation technique for otherwise non-selective ion detectors. Therefore, the recombination(More)
We present a high kinetic energy ion mobility spectrometer (HiKE-IMS) for quantitative gas analysis. Drift tube and reaction tube can be operated at reduced fields up to 110 Td. At such conditions the distribution of reactant ion water clusters is shifted toward smaller clusters. Due to the resulting presence of bare reactant ions (e.g., H3O(+)) and the(More)
Due to its high sensitivity, compact size and low cost ion mobility spectrometry (IMS) has the potential to become a point-of-care breath analyzer. Therefore, we developed a prototype of a compact, closed gas loop IMS with gas chromatographic (GC) pre-separation and high resolving power of R  =  90. In this study, we evaluated the performance of this GC-IMS(More)
  • 1