Learn More
Physiologically based models, when verified in pre-clinical species, optimally predict human pharmacokinetics. However, modeling of intestinal metabolism has been a gap. To establish in vitro/in vivo scaling factors for metabolism, the expression and activity of CYP enzymes were characterized in the intestine and liver of beagle dog. Microsomal protein(More)
Proteolysis represents one of the most tightly controlled physiological processes, as proteases create events that will typically commit pathways in an irreversible manner. Despite their implication in nearly all biological systems, our understanding of the role of proteases in disease pathology is often limited. Several approaches to studying proteolytic(More)
Reverse-phase protein arrays (RPPAs) have become an important tool for the sensitive and high-throughput detection of proteins from minute amounts of lysates from cell lines and cryopreserved tissue. The current standard method for tissue preservation in almost all hospitals worldwide is formalin fixation and paraffin embedding, and it would be highly(More)
The current study was performed to assess the precision of the principal subvisible particle measurement methods available today. Special attention was given to identifying the sources of error and the factors governing analytical performance. The performance of individual techniques was evaluated using a commercial biologic drug product in a prefilled(More)
Beagle dogs are used to study oral pharmacokinetics and guide development of drug formulations for human use. Since mechanistic insight into species differences is needed to translate findings in this species to human, abundances of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) drug metabolizing enzymes have been quantified in(More)
Although both erlotinib and gefitinib target the EGF receptor (EGFR), erlotinib is effective in patients with EGFR wild-type or mutated tumors, whereas gefitinib is only beneficial for patients with activating mutations. To determine whether these differences in clinical outcomes can be attributed to their respective protein interaction profiles, a(More)
Elastin is one of the major extracellular matrix proteins associated with connective tissue. Its degradation leads to the liberation of the unique amino acids desmosine and isodesmosine. These have shown utility as biomarkers of elastin breakdown for disease progression, patient stratification, and drug efficacy. So far, the quantitation of desmosines in(More)
Mapping protein-protein interactions is essential to fully characterize the biological function of a protein and improve our understanding of diseases. Affinity purification coupled to mass spectrometry (AP-MS) using selective antibodies against a target protein has been commonly applied to study protein complexes. However, one major limitation is a lack of(More)
The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selectedreaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors.(More)
The propagation of phosphorylation downstream of receptor tyrosine kinases is a key dynamic cellular event involved in signal transduction, which is often deregulated in disease states such as cancer. Probing phosphorylation dynamics is therefore crucial for understanding receptor tyrosine kinases' function and finding ways to inhibit their effects. MS(More)