Jens Giegerich

Learn More
This article investigates the extent to which synonymy blocking occurs in the synchronic derivation and, more controversially, whether it is predicted by the Elsewhere Condition (‘EC’). It argues that in current Lexical Morphology, EC accurately predicts the presence of ‘ token blocking’ and the absence of ‘ type blocking’, that apparent token-blocking(More)
We present a joint experimental and computational study of the nonradiative deactivation of the benzyl radical, C7H7, after UV excitation. Femtosecond time-resolved photoelectron imaging was applied to investigate the photodynamics of the radical. The experiments were accompanied by excited state dynamics simulations using surface hopping. Benzyl has been(More)
The photodissociation dynamics of the ethyl radical C(2)H(5) has been investigated by velocity map imaging. Ethyl was produced by flash pyrolysis from n-propyl nitrite and excited to the à (2)A(') (3s) Rydberg state around 250 nm. The energetically most favorable reaction channel in this wavelength region is dissociation to C(2)H(4) (ethene) + H. The(More)
We report a joint theoretical and experimental study on the photodissociation of the C3H2 isomer propargylene, HCCCH, combining velocity map imaging with nonadiabatic trajectory surface hopping calculations. Propargylene loses an H-atom, after laser excitation at around 250 nm, presumably to the T6 state. The photofragment angular distribution exhibits only(More)
The photodissociation dynamics of isolated fulvenallene, the most stable C7H6 isomer, is investigated in a free jet. Fulvenallene, an intermediate in toluene combustion, is generated by flash pyrolysis from phthalide and excited between 255 and 245 nm into a ππ* state with high oscillator strengths. We show that loss of a hydrogen atom and formation of(More)
The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH3)2) and t-butyl (C(CH3)3) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained(More)
In this joint experimental and theoretical study we characterize the complete dynamical "life cycle" associated with the photoexcitation of the singlet carbene cyclopropenylidene to the lowest lying optically bright excited electronic state: from the initial creation of an excited-state wavepacket to the ultimate fragmentation of the molecule on the(More)
  • 1