Learn More
Quantitative analysis of cellular interactions with the extracellular environment is necessary to gain an understanding of how cells regulate adhesion in the development and maintenance of multicellular organisms, and how changes in cell adhesion contribute to diseases. We provide a practical guide to quantify the adhesive strength of living animal cells to(More)
The extracellular matrix in tissues such as bone, tendon and cornea contains ordered, parallel arrays of collagen type I fibrils. Cells embedded in these matrices frequently co-align with the collagen fibrils, suggesting that ordered fibrils provide structural or signalling cues for cell polarization. To study mechanisms of matrix-induced cell alignment, we(More)
Mandibular tumor resection can lead to a mandibular segmental defect. LaserCUSING® is used to produce a mandibular implant, designed to be identical to the shape of the mandibular defect. Novel microrough surfaces result from this generative technology. In the current study, the behavior of human osteoblasts on untreated laser-cused titanium specimens or on(More)
Atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) enables the quantitative study of cell adhesion under physiological conditions. SCFS probes adhesive interactions of single living cells with substrates such as extracellular matrix (ECM) proteins and other cells. Here we present a protocol to study integrin-mediated adhesion of HeLa(More)
We have characterized early steps of alpha(2)beta(1) integrin-mediated cell adhesion to a collagen type I matrix by using single-cell force spectroscopy. In agreement with the role of alpha(2)beta(1) as a collagen type I receptor, alpha(2)beta(1)-expressing Chinese hamster ovary (CHO)-A2 cells spread rapidly on the matrix, whereas alpha(2)beta(1)-negative(More)
Galectins are a taxonomically widespread family of galactose-binding proteins of which galectin-3 is known to modulate cell adhesion. Using single cell force spectroscopy, the contribution of galectin-3 to the adhesion of Madin-Darby canine kidney (MDCK) cells to different extracellular matrix proteins was investigated. When adhering to collagen-I or -IV,(More)
Galectins are widely expressed in epithelial tissues and have been implicated in a variety of cellular processes, including adhesion and polarization. Here we studied the contributions of galectins in cell adhesion and cyst formation of Madin-Darby canine kidney cells. Quantitative single cell force spectroscopy and standard adhesion assays were employed to(More)
The insulating layers of myelin membrane wrapped around axons by oligodendrocytes are essential for the rapid conduction of nerve impulses in the central nervous system. To fulfill this function as an electrical insulator, myelin requires a unique lipid and protein composition. Here we show that oligodendrocytes employ a barrier that functions as a physical(More)
A major obstacle in defining the exact role of extracellular matrix (ECM) in stem cell niches is the lack of suitable in vitro methods that recapitulate complex ECM microenvironments. Here we describe a methodology that permits reliable anchorage of native cell-secreted ECM to culture carriers. We validated our approach by fabricating two types of human(More)
Collagen fibres within the extracellular matrix lend tensile strength to tissues and form a functional scaffold for cells. Cells can move directionally along the axis of fibrous structures, in a process important in wound healing and cell migration. The precise nature of the structural cues within the collagen fibrils that can direct cell movement are not(More)