Jens Friedrichs

Learn More
The insulating layers of myelin membrane wrapped around axons by oligodendrocytes are essential for the rapid conduction of nerve impulses in the central nervous system. To fulfill this function as an electrical insulator, myelin requires a unique lipid and protein composition. Here we show that oligodendrocytes employ a barrier that functions as a physical(More)
A major obstacle in defining the exact role of extracellular matrix (ECM) in stem cell niches is the lack of suitable in vitro methods that recapitulate complex ECM microenvironments. Here we describe a methodology that permits reliable anchorage of native cell-secreted ECM to culture carriers. We validated our approach by fabricating two types of human(More)
We have characterized early steps of ␣ 2 ␤ 1 integrin-mediated cell adhesion to a collagen type I matrix by using single-cell force spectroscopy. In agreement with the role of ␣ 2 ␤ 1 as a collagen type I receptor, ␣ 2 ␤ 1-expressing Chinese hamster ovary (CHO)-A2 cells spread rapidly on the matrix, whereas ␣ 2 ␤ 1-negative CHO wild-type cells adhered(More)
PURPOSE To use nanoscopically defined, two-dimensional matrices assembled from aligned collagen type I fibrils as a sheet substratum for in vitro cultivation of human corneal endothelial cells (HCECs). To assess the effect of matrix architecture on HCEC morphology and to characterize integrin-mediated HCEC-matrix interaction. METHODS Cell alignment and(More)
The properties of epithelial cells within tissues are regulated by their immediate microenvironment, which consists of neighboring cells and the extracellular matrix (ECM). Integrin heterodimers orchestrate dynamic assembly and disassembly of cell-ECM connections and thereby convey biochemical and mechanical information from the ECM into cells. However, the(More)
We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration(More)
Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical(More)
  • 1