Jens Friedrichs

Learn More
The insulating layers of myelin membrane wrapped around axons by oligodendrocytes are essential for the rapid conduction of nerve impulses in the central nervous system. To fulfill this function as an electrical insulator, myelin requires a unique lipid and protein composition. Here we show that oligodendrocytes employ a barrier that functions as a physical(More)
Atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) enables the quantitative study of cell adhesion under physiological conditions. SCFS probes adhesive interactions of single living cells with substrates such as extracellular matrix (ECM) proteins and other cells. Here we present a protocol to study integrin-mediated adhesion of HeLa(More)
To control their attachment to substrates and other cells, cells regulate their adhesion receptors. One regulatory process is receptor crosstalk, where the binding of one type of cell adhesion molecule influences the activity of another type. To identify such crosstalk and gain insight into their mechanisms, we developed the stimulated single-cell force(More)
The properties of epithelial cells within tissues are regulated by their immediate microenvironment, which consists of neighboring cells and the extracellular matrix (ECM). Integrin heterodimers orchestrate dynamic assembly and disassembly of cell-ECM connections and thereby convey biochemical and mechanical information from the ECM into cells. However, the(More)
We have characterized early steps of alpha(2)beta(1) integrin-mediated cell adhesion to a collagen type I matrix by using single-cell force spectroscopy. In agreement with the role of alpha(2)beta(1) as a collagen type I receptor, alpha(2)beta(1)-expressing Chinese hamster ovary (CHO)-A2 cells spread rapidly on the matrix, whereas alpha(2)beta(1)-negative(More)
A major obstacle in defining the exact role of extracellular matrix (ECM) in stem cell niches is the lack of suitable in vitro methods that recapitulate complex ECM microenvironments. Here we describe a methodology that permits reliable anchorage of native cell-secreted ECM to culture carriers. We validated our approach by fabricating two types of human(More)
Quantitative analysis of cellular interactions with the extracellular environment is necessary to gain an understanding of how cells regulate adhesion in the development and maintenance of multicellular organisms, and how changes in cell adhesion contribute to diseases. We provide a practical guide to quantify the adhesive strength of living animal cells to(More)
Galectins are a taxonomically widespread family of galactose-binding proteins of which galectin-3 is known to modulate cell adhesion. Using single cell force spectroscopy, the contribution of galectin-3 to the adhesion of Madin-Darby canine kidney (MDCK) cells to different extracellular matrix proteins was investigated. When adhering to collagen-I or -IV,(More)
  • Kate Poole, Khaled Khairy, +4 authors Daniel Mueller
  • Journal of molecular biology
  • 2005
Collagen fibres within the extracellular matrix lend tensile strength to tissues and form a functional scaffold for cells. Cells can move directionally along the axis of fibrous structures, in a process important in wound healing and cell migration. The precise nature of the structural cues within the collagen fibrils that can direct cell movement are not(More)
Tumour microenvironment greatly influences the development and metastasis of cancer progression. The development of three dimensional (3D) culture models which mimic that displayed in vivo can improve cancer biology studies and accelerate novel anticancer drug screening. Inspired by a systems biology approach, we have formed 3D in vitro bioengineered tumour(More)