Jens Förstner

Learn More
Although the benefits of FPGAs for accelerating scientific codes are widely acknowledged, the use of FPGA accelerators in scientific computing is not widespread because reaping these benefits requires knowledge of hardware design methods and tools that is typically not available with domain scientists. A promising but hardly investigated approach is to(More)
Finite difference methods are widely used, highly parallel algorithms for solving differential equations. However, the algorithms are memory bound and thus difficult to implement efficiently on CPUs or GPUs. In this work we study the implementation of the finite difference time domain (FDTD) method for solving Maxwell's equations on an FPGA-based Maxeler(More)
  • 1