Learn More
Although the benefits of FPGAs for accelerating scientific codes are widely acknowledged, the use of FPGA accelerators in scientific computing is not widespread because reaping these benefits requires knowledge of hardware design methods and tools that is typically not available with domain scientists. A promising but hardly investigated approach is to(More)
We present results of simulation of light scattering by randomly irregular particles that have dimensions larger than the wavelength of incident light. We apply the discontinuous Galerkin time domain method and compare the accurate solution with that obtained using an approximate geometric-optics model. A qualitative agreement is observed for scattering(More)
Finite difference methods are widely used, highly parallel algorithms for solving differential equations. However, the algorithms are memory bound and thus difficult to implement efficiently on CPUs or GPUs. In this work we study the implementation of the finite difference time domain (FDTD) method for solving Maxwell's equations on an FPGA-based Maxeler(More)
Plasmon modes of the exact same individual gold nanoprisms are investigated through combined nanometer-resolved electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) measurements. We show that CL only probes the radiative modes, in contrast to EELS, which additionally reveals dark modes. The combination of both techniques on the same(More)
We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through(More)
We present phase-resolved pulse propagation measurements that allow us to fully describe the transition between several light-matter interaction regimes. The complete range from linear excitation to the breakdown of the photonic bandgap on to self-induced transmission and self-phase modulation is studied on a high-quality multiple-quantum-well Bragg(More)
We show how to optically connect guiding layers at different elevations in a 3-D integrated photonic circuit. Transfer of optical power carried by planar, semi-guided waves is possible without reflections or radiation losses, and over large vertical distances. This functionality is realized through simple step-like folds of high-contrast dielectric slab(More)
resistance to increase until that area is depleted causing the voids to coalesce which causes the local temperature and current density to drop and consequently the resistance drops. A critical film temperature T c = 254 C was identified at which the maximum height M of resistance transient reaches a peak value M p as a function of current density. In(More)
Using a finite-difference time-domain method, we theoretically investigate the optical spectra of crossing perpendicular photonic crystal waveguides with quantum dots embedded in the central rod. The waveguides are designed so that the light mainly propagates along one direction and the cross talk is greatly reduced in the transverse direction. It is shown(More)
We simulate light scattering by random irregular particles that have dimensions much larger than the wavelength of incident light at the size parameter of X=200 using the discontinuous Galerkin time domain method. A comparison of the DGTD solution for smoothly faceted particles with that obtained with a geometric optics model shows good agreement for the(More)