Jens Christopher Bolten

Learn More
We demonstrate for the first time a fully integrated electro-optic modulator based on locally strained silicon rib-waveguides. By depositing a Si3N4 strain layer directly on top of the silicon waveguide the silicon crystal is asymmetrically distorted. Thus its inversion symmetry is broken and a linear electro-optic effect is induced. Electro-optic(More)
We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si₃N₄ strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the(More)
We report on high-speed multilevel signal generation and arbitrary pulse shaping with silicon-organic hybrid (SOH) Mach-Zehnder interferometer (MZI) modulators. Pure phase modulation exploiting the linear electrooptic effect allows the generation of multiple modulations formats at highest speed such as 40-Gbit/s on-off-keying (OOK) and binary-phase-shift(More)
We report on a silicon-organic hybrid modulator based on a Mach-Zehnder interferometer (MZI) operating at 10 Gbit/s with an energy consumption of 320 fJ/bit. The device consists of a striploaded slot waveguide covered with an electro-optic polymer cladding. The MZI modulator is poled to be driven in push-pull operation by a single coplanar RF line. Our(More)
Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the(More)
We present all-optical switching in oxygen ion implanted silicon microring resonators. Time-dependent signal modulation is achieved by shifting resonance wavelengths of microrings through the plasma dispersion effect via femtosecond photogeneration of electron-hole pairs and subsequent trapping at implantation induced defect states. We observe a switching(More)
We demonstrate compact highly efficient broadband strip-to-slot mode converters in silicon with record-low losses of 0.02 (±0.02) dB and negligible reflections between 1480 nm and 1580 nm. The new strip-to-slot transition is logarithmically tapered, which enables a compact design. The new logarithmic tapers are compared with more conventional(More)
Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, neither silicon nor metals exhibit appreciable(More)
We demonstrate silicon-organic hybrid (SOH) electro-optic modulators that enable quadrature phase-shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM) with high signal quality and record-low energy consumption. SOH integration combines highly efficient electro-optic organic materials with conventional silicon-on-insulator (SOI) slot(More)
A planar nanophotonic Fabry-Perot-like resonator that can defy strong absorption of about 20 000 cm(-1) in the cavity material is demonstrated. Visible laser emission is observed from two silicon subwavelength-sized high index contrast gratings with embedded polymer gain material. The size of the laser is reduced by an order of magnitude compared to(More)