Jens-Christian Navarro Poulsen

Learn More
Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of(More)
Lytic polysaccharide monooxygenases (LPMOs) are recently discovered enzymes that oxidatively deconstruct polysaccharides. LPMOs are fundamental in the effective utilization of these substrates by bacteria and fungi; moreover, the enzymes have significant industrial importance. We report here the activity, spectroscopy and three-dimensional structure of a(More)
In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix-turn-helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator sites). Here the crystal structure of the NTD of the CI(More)
Rhamnogalacturonan lyase (RG-lyase) specifically recognizes and cleaves alpha-1,4 glycosidic bonds between L-rhamnose and D-galacturonic acids in the backbone of rhamnogalacturonan-I, a major component of the plant cell wall polysaccharide, pectin. The three-dimensional structure of RG-lyase from Aspergillus aculeatus has been determined to 1.5 A resolution(More)
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural(More)
Seven amino-acid substitutions introduced into the 343 amino-acid-long sequence of Coprinus cinereus peroxidase (CiP) led to a mutant enzyme (TS-rCiP) which is more stable than the native enzyme at higher temperature, pH and hydrogen peroxide concentrations. It is therefore more suitable for industrial applications. A structure determination was conducted(More)
The structure of the peroxidase from Coprinus cinereus (CiP) has been determined in three different space groups and crystalline environments. Two of these are of the recombinant glycosylated form (rCiP), which crystallized in space groups P2(1)2(1)2(1) and C2. The third crystal form was obtained from a variant of CiP in which the glycosylation sites have(More)
Orotidine 5'-monophosphate decarboxylase (ODCase) catalyses the decarboxylation of orotidine 5'-monophosphate to uridine 5'-monophosphate (UMP). We have earlier determined the structure of ODCase from Escherichia coli complexed with the inhibitor 1-(5'-phospho-beta-d-ribofuranosyl)barbituric acid (BMP); here we present the 2.5 A structure of the uncomplexed(More)
Antifreeze proteins (AFPs) are essential components of many organisms adaptation to cold temperatures. Fish type III AFPs are divided into two groups, SP isoforms being much less active than QAE1 isoforms. Two type III AFPs from Zoarces viviparus, a QAE1 (ZvAFP13) and an SP (ZvAFP6) isoform, are here characterized and their crystal structures determined. We(More)
The crystal structure of the first immunoglobulin (Ig1) domain of neural cell adhesion molecule 2 (NCAM2/OCAM/RNCAM) is presented at a resolution of 2.7 A. NCAM2 is a member of the immunoglobulin superfamily of cell adhesion molecules (IgCAMs). In the structure, two Ig domains interact by domain swapping, as the two N-terminal beta-strands are interchanged.(More)