Learn More
Mutations in ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, cause osteopetrosis and lysosomal storage disease in humans and mice. Severe osteopetrosis is also observed with mutations in the OSTM1 gene, which encodes a membrane protein of unknown function. Here we show that both ClC-7 and Ostm1 proteins(More)
ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H(+)-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H(+)-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration(More)
The CLC gene family encodes nine different Cl() channels in mammals. These channels perform their functions in the plasma membrane or in intracellular organelles such as vesicles of the endosomal/lysosomal pathway or in synaptic vesicles. The elucidation of their cellular roles and their importance for the organism were greatly facilitated by mouse models(More)
The clustering of glycine receptors and major subtypes of GABA(A) receptors at inhibitory synapses is mediated by the tubulin-binding protein gephyrin. In an attempt to identify additional components of inhibitory postsynaptic specializations, we performed a yeast two-hybrid screen using gephyrin as bait. Multiple positive clones encoded either the dynein(More)
Mammalian CLC proteins function as Cl(-) channels or as electrogenic Cl(-)/H(+) exchangers and are present in the plasma membrane and intracellular vesicles. We now show that the ClC-6 protein is almost exclusively expressed in neurons of the central and peripheral nervous systems, with a particularly high expression in dorsal root ganglia. ClC-6(More)
gamma-Aminobutyric acid type A receptors (GABA(A)Rs) are ligand-gated chloride channels that exist in numerous distinct subunit combinations. At postsynaptic membrane specializations, different GABA(A)R isoforms colocalize with the tubulin-binding protein gephyrin. However, direct interactions of GABA(A)R subunits with gephyrin have not been reported.(More)
The role the cytoskeleton plays in generating and/or maintaining gephyrin-dependent receptor clusters at inhibitory synapses is poorly understood. Here, the effects of actin cytoskeleton disruption were investigated in eGFP-gephyrin-transfected cells and hippocampal neurons. While gephyrin was not associated with microfilaments in transfected cells, it(More)
Ion channels allow the passage of specific ions and electrical charge. Plasma membrane channels are, for example, important for electrical excitability and transepithelial transport, whereas intracellular channels have roles in acidifying endosomes or in releasing Ca(2+) from stores. The function of several channels emerged from mutations in humans or mice.(More)
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is associated with weight loss, improved insulin sensitivity and glucose homeostasis, and a reduction in co-morbidities such as diabetes and coronary heart disease. To generate further insight into the numerous metabolic adaptations associated with RYGB surgery, we profiled serum metabolites before and(More)
The brain-specific GDP/GTP exchange factor collybistin interacts with the receptor-anchoring protein gephyrin and activates the Rho-like GTPase Cdc42, which is known to regulate actin cytoskeleton dynamics. Alternative splicing creates two collybistin variants, I and II. In coexpression experiments, collybistin II has been shown to induce the formation of(More)