Jens C. Fuhrmann

Learn More
ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H(+)-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H(+)-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration(More)
Mutations in ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, cause osteopetrosis and lysosomal storage disease in humans and mice. Severe osteopetrosis is also observed with mutations in the OSTM1 gene, which encodes a membrane protein of unknown function. Here we show that both ClC-7 and Ostm1 proteins(More)
Mammalian CLC proteins function as Cl(-) channels or as electrogenic Cl(-)/H(+) exchangers and are present in the plasma membrane and intracellular vesicles. We now show that the ClC-6 protein is almost exclusively expressed in neurons of the central and peripheral nervous systems, with a particularly high expression in dorsal root ganglia. ClC-6(More)
The clustering of glycine receptors and major subtypes of GABA(A) receptors at inhibitory synapses is mediated by the tubulin-binding protein gephyrin. In an attempt to identify additional components of inhibitory postsynaptic specializations, we performed a yeast two-hybrid screen using gephyrin as bait. Multiple positive clones encoded either the dynein(More)
The CLC gene family encodes nine different Cl() channels in mammals. These channels perform their functions in the plasma membrane or in intracellular organelles such as vesicles of the endosomal/lysosomal pathway or in synaptic vesicles. The elucidation of their cellular roles and their importance for the organism were greatly facilitated by mouse models(More)
gamma-Aminobutyric acid type A receptors (GABA(A)Rs) are ligand-gated chloride channels that exist in numerous distinct subunit combinations. At postsynaptic membrane specializations, different GABA(A)R isoforms colocalize with the tubulin-binding protein gephyrin. However, direct interactions of GABA(A)R subunits with gephyrin have not been reported.(More)
The role the cytoskeleton plays in generating and/or maintaining gephyrin-dependent receptor clusters at inhibitory synapses is poorly understood. Here, the effects of actin cytoskeleton disruption were investigated in eGFP-gephyrin-transfected cells and hippocampal neurons. While gephyrin was not associated with microfilaments in transfected cells, it(More)
Mutations in either ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, or in its beta-subunit Ostm1 cause osteopetrosis and lysosomal storage disease in mice and humans. The severe phenotype of mice globally deleted for ClC-7 or Ostm1 and the absence of storage material in cultured cells hampered investigations(More)
The proteins ClC-6 and ClC-7 are expressed in the endosomal-lysosomal system. Because Clcn6-deficient mice display some features of neuronal ceroid lipofuscinosis (NCL), CLCN6 may be a candidate gene for novel forms of NCL. Using landmarks of disease progression from NCL mouse models as a guide, we examined neuropathologic alterations in the central nervous(More)
Cystathionine gamma-synthase, the enzyme catalysing the first reaction specific for methionine biosynthesis, has been cloned from Nicotiana tabacum, overexpressed in Escherichia coli and purified to homogeneity. The recombinant cystathionine gamma-synthase catalyses the pyridoxal 5'-phosphate dependent formation of L-cystathionine from L-homoserine(More)