Learn More
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land(More)
The basic question addressed in this study is how energy metabolism is adjusted to cope with iron deficiency in Chlamydomonas reinhardtii. To investigate the impact of iron deficiency on bioenergetic pathways, comparative proteomics was combined with spectroscopic as well as voltametric oxygen measurements to assess protein dynamics linked to functional(More)
A new high-throughput computational strategy was established that improves genomic data mining from MS experiments. The MS/MS data were analyzed by the SEQUEST search algorithm and a combination of de novo amino acid sequencing in conjunction with an error-tolerant database search tool, operating on a 256 processor computer cluster. The error-tolerant(More)
Proteomics is the study of proteins, their time- and location-dependent expression profiles, as well as their modifications and interactions. Mass spectrometry is useful to investigate many of the questions asked in proteomics. Database search methods are typically employed to identify proteins from complex mixtures. However, databases are not often(More)
Improvements in genome sequencing technology increased the availability of full genomes and transcriptomes of many organisms. However, the major benefit of massive parallel sequencing is to better understand the organization and function of genes which then lead to understanding of phenotypes. In order to interpret genomic data with automated gene(More)
The amount of information stemming from proteomics experiments involving (multi dimensional) separation techniques, mass spectrometric analysis, and computational analysis is ever-increasing. Data from such an experimental workflow needs to be captured, related and analyzed. Biological experiments within this scope produce heterogenic data ranging from(More)
MicroRNAs (miRNAs) are important players in gene regulation. The final and maybe the most important step in their regulatory pathway is the targeting. Targeting is the binding of the miRNA to the mature RNA via the RNA-induced silencing complex. Expression patterns of miRNAs are highly specific in respect to external stimuli, developmental stage, or tissue.(More)
We present a new approach that allows the identification of intron-split peptides from mass spectrometric data in genomic databases. Our algorithm uses small regions of peptide sequence information which are automatically deduced from de novo amino acid sequence predictions together with the molecular mass information of the precursor ion. The sequence(More)
MicroRNAs (miRNAs) were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii,(More)