Learn More
We present a photometric stereo technique that operates on time-lapse sequences captured by static outdoor webcams over the course of several months. Outdoor webcams produce a large set of uncontrolled images subject to varying lighting and weather conditions. We first automatically select a suitable subset of the captured frames for further processing,(More)
2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of(More)
We present a feature-sensitive remeshing algorithm for relaxation-based methods. The first stage of the algorithm creates a new mesh from scratch by resampling the reference mesh with an exact vertex budget with either uniform or non-uniform vertex distribution according to a density function. The newly introduced samples on the mesh surface are(More)
We introduce an example-based photometric stereo approach that does not require explicit reference objects. Instead, we use a robust multi-view stereo technique to create a partial reconstruction of the scene which serves as scene-intrinsic reference geometry. Similar to the standard approach, we then transfer normals from reconstructed to unreconstructed(More)
We propose a multi-view photometric stereo technique that uses photometric normal consistency to jointly estimate surface position and orientation. The underlying scene representation is based on oriented points, yielding more flexibility compared to smoothly varying surfaces. We demonstrate that the often employed least squares error of the Lambertian(More)
View interpolation and image-based rendering algorithms often produce visual artifacts in regions where the 3D scene geometry is erroneous, uncertain, or incomplete. We introduce ambient point clouds constructed from colored pixels with uncertain depth, which help reduce these artifacts while providing non-photorealistic background coloring and emphasizing(More)
Understanding biological evolution prompts for a detailed understanding of the realized phenotype. Biochemical and gene regulatory dynamics are a cornerstone for the physiology of the cell and must therefore be regarded as one of the major aspects of such a phenotype. Experimental insight into molecular parameters is, however, hard to come by. Model(More)