Jenny Tran

Learn More
Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage,(More)
BACKGROUND New therapies for asthma which can address three main interrelated features of the disease, airway inflammation, airway remodeling and airway hyperreactivity, are urgently required. Resveratrol, a well known red wine polyphenol has received much attention due to its potential anti-aging properties. This compound is an agonist of silent(More)
The relative contributions of large and small airways to hyperresponsiveness in asthma have yet to be fully assessed. This study used a mouse model of chronic allergic airways disease to induce inflammation and remodelling and determine whether in vivo hyperresponsiveness to methacholine is consistent with in vitro reactivity of trachea and small airways.(More)
There is a need for new asthma therapies that can concurrently address airway remodeling, airway hyperresponsiveness and progressive irreversible loss of lung function, in addition to inhibiting inflammation. Histone deacetylase inhibitors (HDACi) alter gene expression by interfering with the removal of acetyl groups from histones. The HDACi trichostatin A(More)
FHL1, BAG3, MATR3 and PTRF are recently identified myopathy genes associated with phenotypes that overlap muscular dystrophy. TCAP is a rare reported cause of muscular dystrophy not routinely screened in most centres. We hypothesised that these genes may account for patients with undiagnosed forms of muscular dystrophy in Australia. We screened a large(More)
  • 1