Jenny R. Chang

Learn More
Both genetic background and environmental factors, very probably viruses, appear to play a role in the etiology of multiple sclerosis (MS). Lessons from viral experimental models suggest that many different viruses may trigger inflammatory demyelinating diseases resembling MS. Theiler's virus, a picornavirus, induces in susceptible strains of mice early(More)
Intracranial inoculation of susceptible SJL mice with Theiler's murine encephalomyelitis virus (TMEV) results in biphasic disease consisting of early acute disease, followed by late chronic demyelinating disease, associated with mononuclear infiltrates and demyelinating lesions. In contrast, resistant C57BL/6 (B6) mice develop only early acute disease. We(More)
Vascular endothelial growth factor (VEGF, VEGF-A), a selective mitogen for endothelial cells is a critical factor for vascular development. Two isoforms that differ in the presence of exons 6 and 7, Vegf(165) and Vegf(121), are the dominant forms expressed in zebrafish embryo. Simultaneous overexpression of both isoforms in the embryo results in increased(More)
The Staphylococcus aureus pathogenicity island SaPI1 carries the gene for the toxic shock syndrome toxin (TSST-1) and can be mobilized by infection with S. aureus helper phage 80alpha. SaPI1 depends on the helper phage for excision, replication and genome packaging. The SaPI1-transducing particles comprise proteins encoded by the helper phage, but have a(More)
The assembly of complex double-stranded DNA viruses includes a genome packaging step where viral DNA is translocated into the confines of a preformed procapsid shell. In most cases, the preferred packaging substrate is a linear concatemer of viral genomes linked head-to-tail. Viral terminase enzymes are responsible for both excision of an individual genome(More)
Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein(More)
BACKGROUND p53 plays an important role in many areas of cellular physiology and biology, ranging from cellular development and differentiation to cell cycle arrest and apoptosis. Many of its functions are attributed to its role in assuring proper cellular division. However, since the establishment of its role in cell cycle arrest, damage repair, and(More)
Over the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the(More)
Assembly of the E. coli bacteriophage P2 into an icosahedral capsid with T = 7 symmetry is dependent on the gpN capsid protein, the gpQ connector protein and the gpO internal scaffolding protein. In the presence of the P4-encoded protein Sid, the same proteins are assembled into a smaller capsid with T = 4 symmetry. Although gpO has long been expected to(More)
Bacteriophages are involved in many aspects of the spread and establishment of virulence factors in Staphylococcus aureus, including the mobilization of genetic elements known as S. aureus pathogenicity islands (SaPIs), which carry genes for superantigen toxins and other virulence factors. SaPIs are packaged into phage-like transducing particles using(More)