Learn More
A major pathway in the clearance of pathogens involves the coating of the pathogen with specific antibodies, and the binding of the antibody Fc region to cell receptors. This can trigger engulfment of the pathogen by phagocytes or lysis by killer cells. By oligonucleotide site-directed mutagenesis we have engineered a single amino acid change in a mouse(More)
Recombinant versions of the seven equine IgG subclasses were expressed in CHO cells. All assembled into intact immunoglobulins stabilised by disulphide bridges, although, reminiscent of human IgG4, a small proportion of equine IgG4 and IgG7 were held together by non-covalent bonds alone. All seven IgGs were N-glycosylated. In addition IgG3 appeared to be(More)
BACKGROUND Human immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. Although human serum immunoglobulin A (IgA) is the second most abundant class of antibody in the circulation, its contribution, if any, to protective responses against malaria is not clear. RESULTS To explore the mechanism(s) by which IgA(More)
Immunoglobulin G (IgG) is the predominant serum immunoglobulin and has the longest serum half-life of all the antibody classes. The European rabbit IgG has been of significant importance in immunological research, and is therefore well characterized. However, the IgG of other leporids has been disregarded. To evaluate the evolution of this gene in leporids,(More)
IgA is the predominant immunoglobulin isotype in mucosal tissues and external secretions, playing important roles both in defense against pathogens and in maintenance of commensal microbiota. Considering the complexity of its interactions with the surrounding environment, IgA is a likely target for diversifying or positive selection. To investigate this(More)
The M protein of Streptococcus equi subsp. equi known as fibrinogen-binding protein (FgBP) is a cell wall-associated protein with antiphagocytic activity that binds IgG. Recombinant versions of the seven equine IgG subclasses were used to investigate the subclass specificity of FgBP. FgBP bound predominantly to equine IgG4 and IgG7, with little or no(More)
Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other(More)