Jenny Lassiter

Learn More
Studying the plasmonic properties of metallic nanoparticles at the individual nanostructure level is critical to our understanding of nanoscale metallic systems. Here we show how the presence of a nearby dielectric substrate modifies the energies of the plasmon modes of a metallic nanoparticle. The adjacent dielectric lifts the degeneracy of the dipole(More)
Clusters of plasmonic nanoparticles and nanostructures support Fano resonances. Here we show that this spectral feature, produced by the interference between bright and dark modes of the nanoparticle cluster, is strongly dependent upon both geometry and local dielectric environment. This permits a highly sensitive tunability of the Fano dip in both(More)
A metallic nanoparticle positioned over a metal film offers great advantages as a highly controllable system relevant for probing field-enhancement and other plasmonic effects. Because the size and shape of the gap between the nanoparticle and film can be controlled to subnanometer precision using relatively simple, bottom-up fabrication approaches, the(More)
Heterodimers-two closely adjacent metallic nanoparticles differing in size or shape-exemplify a simple nanoscale geometry that gives rise to a remarkably rich set of properties. These include Fano resonances, avoided crossing behavior, and a surprising dependence of the scattering spectrum on the direction of excitation, known as the "optical nanodiode"(More)
The growth of a continuous, uniform Au layer on a dielectric nanoparticle is the critical step in the synthesis of nanoparticles such as nanoshells or nanorice, giving rise to their unique geometry-dependent plasmon resonant properties. Here, we report a novel, streamlined method for Au layer metallization on prepared nanoparticle surfaces using carbon(More)
By varying the relative dimensions of the central and peripheral disks of a plasmonic nanocluster, the depth of its Fano resonance can be systematically modified; spectral windows where the scattering cross section of the nanocluster is negligible can be obtained. In contrast, electron-beam excitation of the plasmon modes at specific locations within the(More)
Our understanding of how the geometry of metallic nanostructures controls the properties of their surface plasmons, based on plasmon hybridization, is useful for developing high-performance substrates for surface enhanced spectroscopies. In this tutorial review, we outline the design of metallic nanostructures tailored specifically for providing(More)
Plasmonic clusters can support Fano resonances, where the line shape characteristics are controlled by cluster geometry. Here we show that clusters with a hemicircular central disk surrounded by a circular ring of closely spaced, coupled nanodisks yield Fano-like and non-Fano-like spectra for orthogonal incident polarization orientations. When this(More)
While the far field properties of Fano resonances are well-known, clusters of plasmonic nanoparticles also possess Fano resonances with unique and spatially complex near field properties. Here we examine the near field properties of individual Fano resonant plasmonic clusters using surface-enhanced Raman scattering (SERS) both from molecules distributed(More)
Plasmonic nanoparticle pairs known as "dimers" embody a simple system for generating intense nanoscale fields for surface enhanced spectroscopies and for developing an understanding of coupled plasmons. Individual nanoshell dimers in directly adjacent pairs and touching geometries show dramatically different plasmonic properties. At close distances,(More)