Learn More
INTRODUCTION Studies in xenograft models and experimental models of metastasis have implicated several beta3 integrin-expressing cell populations, including endothelium, platelets and osteoclasts, in breast tumor progression. Since orthotopic human xenograft models of breast cancer are poorly metastatic to bone and experimental models bypass the formation(More)
Most studies investigating laminins (LMs) in breast cancer have focused on LM-111 or LM-332. Little is known, however, about the expression and function of alpha5 chain-containing LM-511/521 during metastatic progression. Expression of LM-511/521 subunits was examined in genetically related breast tumor lines and corresponding primary tumors and metastases(More)
Perforin, a pore-forming protein secreted by cytotoxic lymphocytes, is indispensable for destroying virus-infected cells and for maintaining immune homeostasis. Perforin polymerizes into transmembrane channels that inflict osmotic stress and facilitate target cell uptake of proapoptotic granzymes. Despite this, the mechanism through which perforin monomers(More)
Cytotoxic lymphocytes (CLs) are the killer cells that destroy intracellular pathogen-infected and transformed cells, predominantly through the cytotoxic granule-mediated death pathway. Soluble cytotoxic granule components, including pore-forming perforin and pro-apoptotic serine proteases, granzymes, synergize to induce unscheduled apoptosis of the target(More)
The pore-forming protein perforin is critical for defense against many human pathogens and for preventing a catastrophic collapse of immune homeostasis, manifested in infancy as Type 2 familial hemophagocytic lymphohistiocytosis (FHL). However, no evidence has yet linked defective perforin cytotoxicity with cancer susceptibility in humans. Here, we examined(More)
Studies in xenograft models and experimental models of metastasis have implicated several β3 integrin-expressing cell populations, including endothelium, platelets and osteoclasts, in breast tumor progression. Since orthotopic human xenograft models of breast cancer are poorly metastatic to bone and experimental models bypass the formation of a primary(More)
Mutations in the perforin gene (PRF1) are a common cause of the fatal immune dysregulation disorder, familial hemophagocytic lymphohistiocytosis (type 2 FHL, FHL2). Here we report a female infant born with biallelic PRF1 mutations: a novel substitution, D49N, and a previously identified in-frame deletion, K285del. We assessed the effects of each mutation on(More)
Cytotoxic lymphocyte-mediated apoptosis is dependent on the delivery of perforin to secretory granules and its ability to form calcium-dependent pores in the target cell after granule exocytosis. It is unclear how cytotoxic lymphocytes synthesize and store perforin without incurring damage or death. We discovered that the extreme C terminus of perforin was(More)
Loss-of-function mutations in the gene coding for perforin (PRF1) markedly reduce the ability of cytotoxic T lymphocytes and natural killer cells to kill target cells, causing immunosuppression and impairing immune regulation. In humans, nearly half of the cases of type 2 familial hemophagocytic lymphohistiocytosis are due to bi-allelic PRF1 mutations. The(More)
Perforin (PRF), a pore-forming protein expressed in cytotoxic lymphocytes, plays a key role in immune surveillance and immune homeostasis. The A91V substitution has a prevalence of 8% to 9% in population studies. While this variant has been suspected of predisposing to various disorders of immune homeostasis, its effect on perforin's function has not been(More)
  • 1