Learn More
A member of the inwardly rectifying potassium channel family was cloned here. The channel, called BIR (Kir6.2), was expressed in large amounts in rat pancreatic islets and glucose-responsive insulin-secreting cell lines. Coexpression with the sulfonylurea receptor SUR reconstituted an inwardly rectifying potassium conductance of 76 picosiemens that was(More)
ATP-sensitive potassium channels, termed KATP channels, link the electrical activity of cell membranes to cellular metabolism. These channels are heteromultimers of sulfonylurea receptor (SUR) and KIR6.X subunits associated with a 1:1 stoichiometry as a tetramer (SUR/KIR6.X forms the pores, whereas SUR regulates their activity. Changes in [ATP]i and [ADP]i(More)
Sulfonylureas are a class of drugs widely used to promote insulin secretion in the treatment of non-insulin-dependent diabetes mellitus. These drugs interact with the sulfonylurea receptor of pancreatic beta cells and inhibit the conductance of adenosine triphosphate (ATP)-dependent potassium (KATP) channels. Cloning of complementary DNAs for the(More)
Adenosine 5'-triphosphate-sensitive potassium (KATP) channels couple metabolic events to membrane electrical activity in a variety of cell types. The cloning and reconstitution of the subunits of these channels demonstrate they are heteromultimers of inwardly rectifying potassium channel subunits (KIR6.x) and sulfonylurea receptors (SUR), members of the(More)
Low Ca2+ extracts of platelets rapidly form an actin gel when warmed to 25 degrees C. The addition of Ca2+ has three effects. At Ca/EGTA = 0.4, the gel begins to contract. Increasing the Ca2+ concentration increases the rate of contraction and reduces the amount of actomyosin gel. Between Ca/EGTA = 0.4 and 0.5, a protease is activated that selectively(More)
Brevin is a Ca2+-modulated actin-associated protein that will sever F-actin and cap barbed filament ends. Limited proteolysis with chymotrypsin or subtilisin cleaves the molecule approximately in half. Cleavage is approximately 10-fold more rapid in Ca2+ than in EGTA. The two fragments are readily separated from each other and from undigested brevin by high(More)
Platelet gelsolin (G), a 90,000-mol-wt protein, binds tightly to actin (A) and calcium at low ionic strength to form a 1:2:2 complex, GA2Ca2 (Bryan, J., and M. Kurth, 1984, J. Biol. Chem. 259:7480-7487). Chromatography of actin and gelsolin mixtures in EGTA-containing solutions isolates a stable binary complex, GA1Ca1 (Kurth, M., and J. Bryan, 1984, J.(More)
KATP channels are heteromultimers of a sulfonylurea receptor SUR and KIR6.2 with the inward rectifier forming the pore which is regulated by SUR. We have examined the contributions of the cytoplasmic domains of KIR6.2 to control of spontaneous bursting and ATP-inhibition in human SUR1/KIR6.2 KATP channels. Truncations of the N-terminus of KIR6.2 nearly(More)
Photobleaching and related photochemical processes are recognized experimental barriers to quantification of fluorescence by microscopy. We have measured the kinetics of photobleaching of fluorophores in living and fixed cells and in microemulsions, and have demonstrated the spatial variability of these processes within individual cells. An inverted(More)
Fascin is an actin-bundling protein that was first isolated from cytoplasmic extracts of sea urchin eggs [Kane, 1975: J. Cell Biol. 66:305-315] and was the first bundling protein to be characterized in vitro. Subsequent work has shown that fascin bundles actin filaments in fertilized egg microvilli and filopodia of phagocytic coelomocytes [Otto et al.,(More)