Jennifer Seifert

Learn More
The Rho guanine nucleotide triphosphatases (GTPases) Rac1 and RhoA are important regulators of axon growth. However, the specific roles each plays are complicated by implications that each is involved in promoting and inhibiting neurite outgrowth. Differential regulation of Rac1 and RhoA activation in cell bodies and growth cones may be important in(More)
Peripheral nerve damage is routinely repaired by autogenic nerve grafting, often leading to less than optimal functional recovery at the expense of healthy donor nerves. Alternative repair strategies use tubular scaffolds to guide the regeneration of damaged nerves, but despite the progress made on improved structural materials for the nerve tubes,(More)
Intraoperative neurophysiological monitoring (IONM) is commonly used as an attempt to minimize neurological morbidity from operative manipulations. The goal of IONM is to identify changes in the central and peripheral nervous system function prior to irreversible damage. Intraoperative monitoring also has been effective in localizing anatomical structures,(More)
In this paper, we describe the first observations of photoinitiated interprotein electron transfer (ET) within sol-gels. We have encapsulated three protein-protein complexes, specifically selected because they represent a full range of affinities, are sensitive to different types of dynamic processes, and thus are expected to respond differently to sol-gel(More)
Diabetes related peripheral neuropathy involves both somatic and autonomic nerves and leads to an array of debilitating abnormalities. Mechanisms may include decreased neuronal conductance, reactive oxygen species, and decreased performance of the perineurium blood-nerve barrier. Here we studied the perineurium characteristics of the dorsal penile nerve in(More)
Correction forces during spine deformity surgery including distraction, impart significant stresses to the spinal cord, which may result in permanent injury. Intraoperative neuromonitoring (IONM) is commonly used by surgeons to recognize possible damage to the spinal cord in cases of evident traumatic or vascular damage to the spinal cord. However, mild(More)
Intraoperative neurophysiological monitoring (IONM) is utilized to minimize neurological morbidity during spine surgery. Transcranial motor evoked potentials (TcMEPs) are principal IONM signals in which the motor cortex of the subject is stimulated with electrical pulses and the evoked potentials are recorded from the muscles of interest. Currently(More)
— Wireless stimulation of neural tissue could enable many emerging neural prosthesis designs, and eliminate problems associated with percutaneous wires and connectors. Our laboratory has developed a 16-channel wireless floating microelectrode array (WFMA) for chronic implantation. Here, we report on its first use within in-vivo experiments, using a rat(More)
Functional stability and in-vivo reliability are significant factors determining the longevity of a neural interface. In this ongoing study, we test the performance of a wireless floating microelectrode array (WFMA) over a period of 143 days. The topography of the microelectrodes has allowed for selective stimulation of different fascicles of the rat(More)
Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control and feel of robotic prosthetic limbs. We have developed a Regenerative Multi-electrode Interface (REMI) that guides re-growing axons through an electrode array deployed in the lumen of a nerve guide. While acute studies have shown the use of the REMI(More)