Learn More
Leks have traditionally been considered as arenas where males compete to attract females and secure matings. Thus, direct fitness benefits mediated through competition between males to fertilize females have been considered to be the primary force driving the evolution of lekking behaviour. Inclusive fitness benefits mediated through kin selection may also(More)
Inner ear epithelia of mature birds regenerate hair cells after ototoxic or acoustic insult. The lack of markers that selectively label cells in regenerating epithelia and of culture systems composed primarily of progenitor cells has hampered the identification of cellular and molecular interactions that regulate hair cell regeneration. In control basilar(More)
In the avian inner ear, nonsensory supporting cells give rise to new sensory hair cells through two distinct processes: mitosis and direct transdifferentiation. Regulation of supporting cell behavior and cell fate specification during avian hair cell regeneration is poorly characterized. Expression of Atoh1, a proneural transcription factor necessary and(More)
Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium.(More)
The capacity of adult mammals to regenerate sensory hair cells is not well defined. To explore early steps in this process, we examined reactivation of a transiently expressed developmental gene, Atoh1, in adult mouse utricles after neomycin-induced hair cell death in culture. Using an adenoviral reporter for Atoh1 enhancer, we found that Atoh1(More)
Neurotrophins and their cognate receptors are critical to normal nervous system development. Trk receptors are high-affinity receptors for nerve-growth factor (trkA), brain-derived neurotrophic factor and neurotrophin-4/5 (trkB), and neurotrophin-3 (trkC). We examine the expression of these three neurotrophin tyrosine kinase receptors in the chick auditory(More)
Unlike mammals, birds regenerate auditory hair cells (HCs) after injury. During regeneration, mature non-sensory supporting cells (SCs) leave quiescence and convert into HCs, through non-mitotic or mitotic mechanisms. During embryogenesis, Notch ligands from nascent HCs exert lateral inhibition, restricting HC production. Here, we examined whether Notch(More)
Advances in hair cell regeneration are progressing at a rapid rate. This review will highlight and critique recent attempts to understand some of the cellular and molecular mechanisms underlying hair cell regeneration in non-mammalian vertebrates and efforts to induce regeneration in the mammalian inner ear sensory epithelium.
Birds respond to hair cell loss by stimulating cell division in the otherwise mitotically quiescent sensory epithelium and by generating new hair cells. We examined cell proliferation during hair cell regeneration in chick basilar papilla by using 5-bromo-2'-deoxyuridine (BrdU). Chicks were noise exposed for 4 or 24 hours and injected with BrdU, and(More)