Learn More
The hippocampus shrinks in late adulthood, leading to impaired memory and increased risk for dementia. Hippocampal and medial temporal lobe volumes are larger in higher-fit adults, and physical activity training increases hippocampal perfusion, but the extent to which aerobic exercise training can modify hippocampal volume in late adulthood remains unknown.(More)
Over the next 20 years the number of Americans diagnosed with dementia is expected to more than double (CDC, 2007). It is, therefore, an important public health initiative to understand what factors contribute to the longevity of a healthy mind. Both default mode network (DMN) function and increased aerobic fitness have been associated with better cognitive(More)
Because children are becoming overweight, unhealthy, and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced(More)
Although training-induced changes in brain activity have been previously examined, plasticity associated with executive functions remains understudied. In this study, we examined training-related changes in cortical activity during a dual task requiring executive control. Two functional magnetic resonance imaging (fMRI) sessions, one before training and one(More)
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined(More)
Research has shown the human brain is organized into separable functional networks during rest and varied states of cognition, and that aging is associated with specific network dysfunctions. The present study used functional magnetic resonance imaging (fMRI) to examine low-frequency (0.008 < f < 0.08 Hz) coherence of cognitively relevant and sensory brain(More)
The extent to which cortical plasticity is retained in old age remains an understudied question, despite large social and scientific implications of such a result. Neuroimaging research reports individual differences in age-related activation, thereby educing speculation that some degree of plasticity may remain throughout life. We conducted a randomized(More)
Genetic variability in the dopaminergic and neurotrophic systems could contribute to age-related impairments in executive control and memory function. In this study we examined whether genetic polymorphisms for catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) were related to the trajectory of cognitive decline occurring over(More)
A growing body of literature provides evidence for the prophylactic influence of cardiorespiratory fitness on cognitive decline in older adults. This study examined the association between cardiorespiratory fitness and recruitment of the neural circuits involved in an attentional control task in a group of healthy older adults. Employing a version of the(More)
We investigated the relative involvement of cortical regions supporting attentional control in older and younger adults during performance on a modified version of the Stroop task. Participants were exposed to two different types of incongruent trials. One of these, an incongruent-ineligible condition, produces conflict at the non-response level, while the(More)