#### Filter Results:

- Full text PDF available (14)

#### Publication Year

2010

2017

- This year (2)
- Last 5 years (12)
- Last 10 years (15)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

Coleman’s theory of p-adic integration figures prominently in several number-theoretic applications, such as finding torsion and rational points on curves, and computing p-adic regulators in K-theory (including p-adic heights on elliptic curves). We describe an algorithm for computing Coleman integrals on hyperelliptic curves, and its implementation in Sage.

In 2006, Mazur, Stein, and Tate [4] gave an algorithm for computing p-adic heights on elliptic curves E over Q for good, ordinary primes p ≥ 5. Their work makes essential use of Kedlaya’s algorithm [3], where the action of Frobenius is computed on a certain basis of the first de Rham cohomology of E, with E given by a “short” Weierstrass model. Kedlaya’s… (More)

- Jennifer S. Balakrishnan, Mirela Çiperiani, William Stein
- Math. Comput.
- 2015

Let E be an elliptic curve defined over Q. The aim of this paper is to make it possible to compute Heegner L-functions and anticyclotomic Λ-adic regulators of E, which were studied by Mazur-Rubin and Howard. We generalize results of Cohen and Watkins and thereby compute Heegner points of nonfundamental discriminant. We then prove a relationship between the… (More)

- Jennifer S. Balakrishnan, J. Steffen Müller, William Stein
- Math. Comput.
- 2016

The paper [6] contains a few errors in the basic assumptions as well as in the formula of Corollary 0.2. First of all, it should have been made clear at the outset that the regular model E for the elliptic curve E must be the minimal regular model, and X the complement of the origin in the regular minimal model. Similarly, the tangential base-point bmust be… (More)

The Coleman integral is a p-adic line integral. Double Coleman integrals on elliptic curves appear in Kim’s nonabelian Chabauty method, the first numerical examples of which were given by the author, Kedlaya, and Kim [3]. This paper describes the algorithms used to produce those examples, as well as techniques to compute higher iterated integrals on… (More)

The Coleman integral is a p-adic line integral that encapsulates various quantities of number theoretic interest. Building on the work of Harrison [8], we extend the Coleman integration algorithms in [2] to even degree models of hyperelliptic curves. We illustrate our methods with numerical examples computed in Sage.

We give a formula for the component at p of the p-adic height pairing of a divisor of degree 0 on a hyperelliptic curve. We use this to give a Chabauty-like method for finding p-adic approximations to p-integral points on such curves when the Mordell-Weil rank of the Jacobian equals the genus. In this case we get an explicit bound for the number of such… (More)

Let E be an elliptic curve defined over Q. The aim of this paper is to make it possible to compute Heegner L-functions and anticyclotomic Λ-adic regulators of E, which were studied by Mazur-Rubin and Howard. We generalize results of Cohen and Watkins, which enable us to compute Heegner points of non-fundamental discriminant. We then prove a relationship… (More)

Bruinier and Yang conjectured a formula for intersection numbers on an arithmetic Hilbert modular surface, and as a consequence obtained a conjectural formula for CM(K).G1 under strong assumptions on the ramification in K. Yang later proved this conjecture under slightly stronger assumptions on the ramification. In recent work, Lauter and Viray proved a… (More)