Jennifer Ripplinger

Learn More
In order to have confidence in model-based phylogenetic analysis, the model of nucleotide substitution adopted must be selected in a statistically rigorous manner. Several model-selection methods are applicable to maximum likelihood (ML) analysis, including the hierarchical likelihood-ratio test (hLRT), Akaike information criterion (AIC), Bayesian(More)
In order to have confidence in model-based phylogenetic methods, such as maximum likelihood (ML) and Bayesian analyses, one must use an appropriate model of molecular evolution identified using statistically rigorous criteria. Although model selection methods such as the likelihood ratio test and Akaike information criterion are widely used in the(More)
Bipartition support in maximum-likelihood (ML) analysis is most commonly assessed using the nonparametric bootstrap. Although bootstrap replicates should theoretically be analyzed in the same manner as the original data, model selection is almost never conducted for bootstrap replicates, substitution-model parameters are often fixed to their(More)