Learn More
One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 giga-electron volts. In(More)
The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy(More)
We report about very high energy (VHE) γ-ray observations of the Crab Nebula with the MAGIC telescope. The γ-ray flux from the nebula was measured between 60 GeV and 9 TeV. The energy spectrum can be described with a curved power law dF dE = f 0 (E/300 GeV) (a+b log 10 (E/300 GeV)) with a flux normalization f 0 of (6.0 ± 0.2 stat) × 10 −10 cm −2 s −1 TeV −1(More)
We report on the discovery of Very High Energy (VHE) γ-ray emission from the BL Lacertae object 1ES 1011+496. The observation was triggered by an optical outburst in March 2007 and the source was observed with the MAGIC telescope from March to May 2007. Observing for 18.7 hr, we find an excess of 6.2 σ with an integrated flux above 200 GeV of (1.58±0.32) ·(More)
All but three (M87, BL Lac and 3C 279) extragalactic sources detected so far at very high energy (VHE) γ-rays belong to the class of high-frequency peaked BL Lac (HBL) objects. This suggested to us a systematic scan of candidate sources with the MAGIC telescope, based on the compilation of X-ray blazars by Donato et al. (2001). The observations took place(More)
Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur(More)
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we(More)
During its first data cycle, between 2005 and the beginning of year 2006, the fast repositioning system of the MAGIC Telescope allowed the observation of nine different GRBs as possible sources of Very High Energy (VHE) γ-rays. These observations were triggered by alerts from Swift, HETE-II, and Integral; they started as fast as possible after the alerts(More)
Based on MAGIC observations from June and July 2007, we have obtained an integral upper limit to the VHE energy emission of the globular cluster M13 of F (E > 200 GeV) < 5.1 × 10 −12 cm −2 s −1 , and differential upper limits for E > 140 GeV. Those limits allow us to constrain the population of millisecond pulsars within M13 and to test models for(More)