Jennifer R. McKelvie

Learn More
A controlled-release study conducted at Vandenberg Air Force Base involved the injection of anaerobic groundwater amended with benzene, toluene, and o-xylene (BToX; 1-3 mg/L each) in two parallel lanes: lane A injectate contained no ethanol, whereas lane B injectate contained approximately 500 mg/L ethanol. As reported previously by Mackay and co-workers,(More)
Carbon isotopic enrichment factors (epsilonC) measured during cometabolic biodegradation of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) by Pseudonocardia tetrahydrofuranoxydans strain K1 were -2.3 +/- 0.2 per thousand, -1.7 +/- 0.2 per thousand, and -1.7 +/- 0.3 per thousand, respectively. The measured(More)
The metabolic response of the earthworm Eisenia fetida to two pesticides, dichlorodiphenyltrichloroethane (DDT) and endosulfan, was characterized in contact tests using proton nuclear magnetic resonance (1H NMR) and principal component analysis (PCA). PCA loading plots suggested that maltose, leucine and alanine were important metabolites contributing to(More)
Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene(More)
Methyl group oxidation, SN2-type hydrolysis, and SN1-type hydrolysis are suggested as natural transformation mechanisms of MTBE. This study reports for the first time MTBE isotopic fractionation during acid hydrolysis and for oxidation by permanganate. In acid hydrolysis, MTBE isotopic enrichment factors were epsilon(C) = -4.9 per thousand +/- 0.6 per(More)
Nuclear magnetic resonance (NMR)--based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds(More)
1H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-beta-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable(More)
In situ biodegradation of benzene, toluene, and xylenes in a petroleum hydrocarbon contaminated aquifer near Fairbanks, Alaska was assessed using carbon and hydrogen compound specific isotope analysis (CSIA) of benzene and toluene and analysis of signature metabolites for toluene (benzylsuccinate) and xylenes (methylbenzylsuccinates). Carbon and hydrogen(More)
Environmental metabolomics is a growing and emerging sub-discipline of metabolomics. Studies with earthworms have progressed from the initial stages of simple contact exposure tests to detailed studies of earthworm responses in soil. Over the past decade, a variety of endogenous metabolites have been identified as potential biomarkers of contaminant(More)
Eisenia fetida earthworms were exposed to phenanthrene for thirty days to compare hydroxypropyl-beta-cyclodextrin (HPCD) extraction of soil and 1H NMR earthworm metabolomics as indicators of bioavailability. The phenanthrene 28-d LC50 value was 750 mg/kg (632-891, 95% confidence intervals) for the peat soil tested. The initial phenanthrene concentration was(More)