Jennifer R. Deuis

Learn More
Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that(More)
Ciguatera, the most common form of nonbacterial ichthyosarcotoxism, is caused by consumption of fish that have bioaccumulated the polyether sodium channel activator ciguatoxin. The neurological symptoms of ciguatera include distressing, often persistent sensory disturbances such as paraesthesias and the pathognomonic symptom of cold allodynia. We show that(More)
Millions of years of evolution have fine-tuned the ability of venom peptides to rapidly incapacitate both prey and potential predators. Toxicofera reptiles are characterized by serous-secreting mandibular or maxillary glands with heightened levels of protein expression. These glands are the core anatomical components of the toxicoferan venom system, which(More)
Rodent models are frequently used to improve our understanding of the molecular mechanisms of pain and to develop novel analgesics. Robust behavioral assays that quantify nociceptive responses to different sensory modalities, such has heat, are therefore needed. Here, we describe a novel behavioral assay to quantify thermal paw withdrawal thresholds in(More)
BACKGROUND Peripheral neuropathy is the major dose-limiting side effect of cisplatin and oxaliplatin, and there are currently no effective treatments available. The aim of this study was to assess the pharmacological mechanisms underlying chemotherapy-induced neuropathy in novel animal models based on intraplantar administration of cisplatin and oxaliplatin(More)
MrIC is a recently described selective agonist of endogenously expressed α7 nAChR. In this study, we further characterize the pharmacological activity of MrIC using Ca(2+) imaging approaches in SH-SY5Y cells endogenously expressing α7 nAChR and demonstrate that MrIC exclusively activates α7 nAChR modulated by type II positive allosteric modulators,(More)
Selective activation of peripheral κ opioid receptors (KORs) may overcome the dose-limiting adverse effects of conventional opioid analgesics. We recently developed a vicinal disulfide-stabilized class of peptides with subnanomolar potency at the KOR. The aim of this study was to assess the analgesic effects of one of these peptides, named conorphin-1, in(More)
Loss-of-function mutations of Na(V)1.7 lead to congenital insensitivity to pain, a rare condition resulting in individuals who are otherwise normal except for the inability to sense pain, making pharmacological inhibition of Na(V)1.7 a promising therapeutic strategy for the treatment of pain. We characterized a novel mouse model of Na(V)1.7-mediated pain(More)
Burn injury is a cause of significant mortality and morbidity worldwide and is frequently associated with severe and long-lasting pain that remains difficult to manage throughout recovery. We characterised a mouse model of burn-induced pain using pharmacological and transcriptomic approaches. Mechanical allodynia elicited by burn injury was partially(More)
  • 1