Jennifer Maria Luckas

  • Citations Per Year
Learn More
Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection(More)
Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Typical phase-change alloys are composed out of the elements germanium, antimony and tellurium. Due to the exceptional combination of properties phase-change materials(More)
Structural and calorimetric investigation of Ge(x)Te(100-x) films over wide range of concentration 10 < x < 50 led to evidence two structural singularities at x ∼ 22 at. % and x ∼ 33-35 at. %. Analysis of bond distribution, bond variability, and glass thermal stability led to conclude to the origin of the first singularity being the flexible/rigid(More)
  • 1